List of prime knots

From HandWiki
Short description: none

In knot theory, prime knots are those knots that are indecomposable under the operation of knot sum. The prime knots with ten or fewer crossings are listed here for quick comparison of their properties and varied naming schemes.

Table of prime knots

Six or fewer crossings

Name Picture Alexander–
Briggs

Rolfsen
Dowker–
Thistlethwaite
Dowker
notation
Conway
notation
crossinglist
Unknot Blue Unknot.png 01 0a1 0
Trefoil knot Blue Trefoil Knot.png 31 3a1 4 6 2 [3] 123:123
Figure-eight knot Blue Figure-Eight Knot.png 41 4a1 4 6 8 2 [22] 1234:2143

1231\4324

Cinquefoil knot Blue Cinquefoil Knot.png 51 5a2 6 8 10 2 4 [5] 12345:12345
Three-twist knot Blue Three-Twist Knot.png 52 5a1 4 8 10 2 6 [32] 12345:12543

1231\452354

Stevedore knot Blue Stevedore Knot.png 61 6a3 4 8 12 10 2 6 [42] 123456:216543

1231\45632654

62 knot Blue 6 2 Knot.png 62 6a2 4 8 10 12 2 6 [312] 123456:234165

1231\45632456

63 knot Blue 6 3 Knot.png 63 6a1 4 8 10 2 12 6 [2112] 123456:236145

1231\45642356

1231\45236456

Seven crossings

Picture Alexander–
Briggs–
Rolfsen
Dowker–
Thistlethwaite
Dowker
notation
Conway
notation
crossinglist
Blue 7 1 Knot.png 71 7a7 8 10 12 14 2 4 6 [7] 1-7:1-7
Blue 7 2 Knot.png 72 7a4 4 10 14 12 2 8 6 [52] 1-7:127-3
7-3 knot.svg 73 7a5 6 10 12 14 2 4 8 [43]
Celtic-knot-linear-7crossings.svg 74 7a6 6 10 12 14 4 2 8 [313]
7-5 knot.svg 75 7a3 4 10 12 14 2 8 6 [322]
7-6 knot.svg 76 7a2 4 8 12 2 14 6 10 [2212]
7-7 knot.svg 77 7a1 4 8 10 12 2 14 6 [21112]

Eight crossings

Picture Alexander–
Briggs–
Rolfsen
Dowker–
Thistlethwaite
Dowker
notation
Conway
notation
Blue 8 1 Knot.png 81 8a­11 4 10 16 14 12 2 8 6 [62]
Knot-8-2.png 82 8a8 4 10 12 14 16 2 6 8 [512]
Knot 8 3.svg 83 8a­18 6 12 10 16 14 4 2 8 [44]
8-4 Knot.svg 84 8a­17 6 10 12 16 14 4 2 8 [413]
Knot8-5.png 85 8a­13 6 8 12 2 14 16 4 10 [3,3,2]
8-6 knot.svg 86 8a­10 4 10 14 16 12 2 8 6 [332]

Knot87.png

87 8a6 4 10 12 14 2 16 6 8 [4112]

Knot88.png

88 8a4 4 8 12 2 16 14 6 10 [2312]

Knot89.png

89 8a­16 6 10 12 14 16 4 2 8 [3113]

Knot810.png

810 8a3 4 8 12 2 14 16 6 10 [3,21,2]

Knot811.png

811 8a9 4 10 12 14 16 2 8 6 [3212]
8crossings-rose-limacon-knot.svg 812 8a5 4 8 14 10 2 16 6 12 [2222]

Knot813.png

813 8a7 4 10 12 14 2 16 8 6 [31112]

Knot814.png

814 8a1 4 8 10 14 2 16 6 12 [22112]
8crossings-two-trefoils.svg 815 8a2 4 8 12 2 14 6 16 10 [21,21,2]
8-16 knot.svg 816 8a­15 6 8 14 12 4 16 2 10 [.2.20]
8 17 Knot.svg 817 8a­14 6 8 12 14 4 16 2 10 [.2.2]
8crossing-symmetrical.svg 818 8a­12 6 8 10 12 14 16 2 4 [8*]
8crossing-symmetrical-nonalternating.svg 819 8n3 4 8 -12 2 -14 -16 -6 -10 [3,3,2-]
Knot 8 20.svg 820 8n1 4 8 -12 2 -14 -6 -16 -10 [3,21,2-]
Lissajous 8 21 Knot.png 821 8n2 4 8 -12 2 14 -6 16 10 [21,21,2-]

Nine crossings

Picture Alexander–
Briggs–
Rolfsen
Dowker–
Thistlethwaite
Dowker
notation
Conway
notation
9-2 star polygon interlaced.svg 91 9a­41 10 12 14 16 18 2 4 6 8 [9]
Knot92.png 92 9a­27 4 12 18 16 14 2 10 8 6 [72]
Knot93.png 93 9a­38 8 12 14 16 18 2 4 6 10 [63]
Knot94.png 94 9a­35 6 12 14 18 16 2 4 10 8 [54]

Knot95.png

95 9a­36 6 12 14 18 16 4 2 10 8 [513]

Knot96.png

96 9a­23 4 12 14 16 18 2 10 6 8 [522]

Knot97.png

97 9a­26 4 12 16 18 14 2 10 8 6 [342]

Knot98.png

98 9a8 4 8 14 2 18 16 6 12 10 [2412]

Knot99.png

99 9a­33 6 12 14 16 18 2 4 10 8 [423]

Knot910.png

910 9a­39 8 12 14 16 18 2 6 4 10 [333]

Knot911.png

911 9a­20 4 10 14 16 12 2 18 6 8 [4122]
Knot912.png 912 9a­22 4 10 16 14 2 18 8 6 12 [4212]
Knot913.png 913 9a­34 6 12 14 16 18 4 2 10 8 [3213]
Knot914.png 914 9a­17 4 10 12 16 14 2 18 8 6 [41112]
Knot915.png 915 9a­10 4 8 14 10 2 18 16 6 12 [2322]
Knot916.png 916 9a­25 4 12 16 18 14 2 8 10 6 [3,3,2+]
Knot917.png 917 9a­14 4 10 12 14 16 2 6 18 8 [21312]
Knot918.png 918 9a­24 4 12 14 16 18 2 10 8 6 [3222]
Knot919.png 919 9a3 4 8 10 14 2 18 16 6 12 [23112]

Knot920.png

920 9a­19 4 10 14 16 2 18 8 6 12 [31212]

Knot921.png

921 9a­21 4 10 14 16 12 2 18 8 6 [31122]

Knot922.png

922 9a2 4 8 10 14 2 16 18 6 12 [211,3,2]
9crossing-knot symmetrical grid.svg 923 9a­16 4 10 12 16 2 8 18 6 14 [22122]

Knot924.png

924 9a7 4 8 14 2 16 18 6 12 10 [3,21,2+]

Knot925.png

925 9a4 4 8 12 2 16 6 18 10 14 [22,21,2]

Knot926.png

926 9a­15 4 10 12 14 16 2 18 8 6 [311112]

Knot927.png

927 9a­12 4 10 12 14 2 18 16 6 8 [212112]

Knot928.png

928 9a5 4 8 12 2 16 14 6 18 10 [21,21,2+]

Knot929.png

929 9a­31 6 10 14 18 4 16 8 2 12 [.2.20.2]

Knot930.png

930 9a1 4 8 10 14 2 16 6 18 12 [211,21,2]

Knot931.png

931 9a­13 4 10 12 14 2 18 16 8 6 [2111112]

Knot932.png

932 9a6 4 8 12 14 2 16 18 10 6 [.21.20]

Knot933.png

933 9a­11 4 8 14 12 2 16 18 10 6 [.21.2]

Knot934.png

934 9a­28 6 8 10 16 14 18 4 2 12 [8*20]
9crossings-threesymmetric-other.svg 935 9a­40 8 12 16 14 18 4 2 6 10 [3,3,3]

Knot936.png

936 9a9 4 8 14 10 2 16 18 6 12 [22,3,2]

Knot937.png

937 9a­18 4 10 14 12 16 2 6 18 8 [3,21,21]

Knot938.png

938 9a­30 6 10 14 18 4 16 2 8 12 [.2.2.2]

Knot939.png

939 9a­32 6 10 14 18 16 2 8 4 12 [2:2:20]
Knot-9crossings-symmetrical.svg 940 9a­27 6 16 14 12 4 2 18 10 8 [9*]
9crossings-decorative-knot-threefold-incircle.svg 941 9a­29 6 10 14 12 16 2 18 4 8 [20:20:20]

Knot942.png

942 9n4 4 8 10 −14 2 −16 −18 −6 −12 [22,3,2−]

Knot943.png

943 9n3 4 8 10 14 2 −16 6 −18 −12 [211,3,2−]

Knot944.png

944 9n1 4 8 10 −14 2 −16 −6 −18 −12 [22,21,2−]

Knot945.png

945 9n2 4 8 10 −14 2 16 −6 18 12 [211,21,2−]

Knot946.png

946 9n5 4 10 −14 −12 −16 2 −6 −18 −8 [3,3,21−]
9-crossing non-alternating 3-symmetrical.svg 947 9n7 6 8 10 16 14 −18 4 2 −12 [8*-20]

Knot948.png

948 9n6 4 10 −14 −12 16 2 −6 18 8 [21,21,21−]

Knot949.png

949 9n8 6 -10 −14 12 −16 −2 18 −4 −8 [−20:−20:−20]

Ten crossings

Picture Alexander–
Briggs–
Rolfsen
Dowker–
Thistlethwaite
Dowker
notation
Conway
notation
101 10a­75 4 12 20 18 16 14 2 10 8 6 [82]
102 10a­59 4 12 14 16 18 20 2 6 8 10 [712]
103 10a­­117 6 14 12 20 18 16 4 2 10 8 [64]
104 10a­­113 6 12 14 20 18 16 4 2 10 8 [613]
105 10a­56 4 12 14 16 18 2 20 6 8 10 [6112]
106 10a­70 4 12 16 18 20 14 2 10 6 8 [532]
107 10a­65 4 12 14 18 16 20 2 10 8 6 [5212]
108 10a­­114 6 14 12 16 18 20 4 2 8 10 [514]
109 10a­­110 6 12 14 16 18 20 4 2 8 10 [5113]
1010 10a­64 4 12 14 18 16 2 20 10 8 6 [51112]
1011 10a­­116 6 14 12 18 20 16 4 2 10 8 [433]
1012 10a­43 4 10 14 16 2 20 18 6 8 12 [4312]
1013 10a­54 4 10 18 16 12 2 20 8 6 14 [4222]
1014 10a­33 4 10 12 16 18 2 20 6 8 14 [42112]
1015 10a­68 4 12 16 18 14 2 10 20 6 8 [4132]
1016 10a­­115 6 14 12 16 18 20 4 2 10 8 [4123]
1017 10a­­107 6 12 14 16 18 2 4 20 8 10 [4114]
1018 10a­63 4 12 14 18 16 2 10 20 8 6 [41122]
1019 10a­­108 6 12 14 16 18 2 4 20 10 8 [41113]
1020 10a­74 4 12 18 20 16 14 2 10 8 6 [352]
1021 10a­60 4 12 14 16 18 20 2 6 10 8 [3412]
1022 10a­­112 6 12 14 18 20 16 4 2 10 8 [3313]
1023 10a­57 4 12 14 16 18 2 20 6 10 8 [33112]
1024 10a­71 4 12 16 18 20 14 2 10 8 6 [3232]
Knot-10-25-sm.png 1025 10a­61 4 12 14 16 18 20 2 10 8 6 [32212]
1026 10a­­111 6 12 14 16 18 20 4 2 10 8 [32113]
1027 10a­58 4 12 14 16 18 2 20 10 8 6 [321112]
1028 10a­44 4 10 14 16 2 20 18 8 6 12 [31312]
1029 10a­53 4 10 16 18 12 2 20 8 6 14 [31222]
1030 10a­34 4 10 12 16 18 2 20 8 6 14 [312112]
1031 10a­69 4 12 16 18 14 2 10 20 8 6 [31132]
1032 10a­55 4 12 14 16 18 2 10 20 8 6 [311122]
1033 10a­­109 6 12 14 16 18 4 2 20 10 8 [311113]
1034 10a­19 4 8 14 2 20 18 16 6 12 10 [2512]
1035 10a­23 4 8 16 10 2 20 18 6 14 12 [2422]
1036 10a5 4 8 10 16 2 20 18 6 14 12 [24112]
1037 10a­49 4 10 16 12 2 8 20 18 6 14 [2332]
1038 10a­29 4 10 12 16 2 8 20 18 6 14 [23122]
1039 10a­26 4 10 12 14 18 2 6 20 8 16 [22312]
1040 10a­30 4 10 12 16 2 20 6 18 8 14 [222112]
1041 10a­35 4 10 12 16 20 2 8 18 6 14 [221212]
1042 10a­31 4 10 12 16 2 20 8 18 6 14 [2211112]
1043 10a­52 4 10 16 14 2 20 8 18 6 12 [212212]
1044 10a­32 4 10 12 16 14 2 20 18 8 6 [2121112]
1045 10a­25 4 10 12 14 16 2 20 18 8 6 [21111112]
1046 10a­81 6 8 14 2 16 18 20 4 10 12 [5,3,2]
1047 10a­15 4 8 14 2 16 18 20 6 10 12 [5,21,2]
1048 10a­79 6 8 14 2 16 18 4 20 10 12 [41,3,2]
1049 10a­13 4 8 14 2 16 18 6 20 10 12 [41,21,2]
1050 10a­82 6 8 14 2 16 18 20 4 12 10 [32,3,2]
1051 10a­16 4 8 14 2 16 18 20 6 12 10 [32,21,2]
1052 10a­80 6 8 14 2 16 18 4 20 12 10 [311,3,2]
1053 10a­14 4 8 14 2 16 18 6 20 12 10 [311,21,2]
1054 10a­48 4 10 16 12 2 8 18 20 6 14 [23,3,2]
1055 10a9 4 8 12 2 16 6 20 18 10 14 [23,21,2]
1056 10a­28 4 10 12 16 2 8 18 20 6 14 [221,3,2]
1057 10a6 4 8 12 2 14 18 6 20 10 16 [221,21,2]
1058 10a­20 4 8 14 10 2 18 6 20 12 16 [22,22,2]
10-59 knot theory square.svg 1059 10a2 4 8 10 14 2 18 6 20 12 16 [22,211,2]
10-60 knot theory square.svg 1060 10a1 4 8 10 14 2 16 18 6 20 12 [211,211,2]
1061 10a­­123 8 10 16 14 2 18 20 6 4 12 [4,3,3]
1062 10a­41 4 10 14 16 2 18 20 6 8 12 [4,3,21]
1063 10a­51 4 10 16 14 2 18 8 6 20 12 [4,21,21]
1064 10a­­122 8 10 14 16 2 18 20 6 4 12 [31,3,3]
1065 10a­42 4 10 14 16 2 18 20 8 6 12 [31,3,21]
1066 10a­40 4 10 14 16 2 18 8 6 20 12 [31,21,21]
1067 10a­37 4 10 14 12 18 2 6 20 8 16 [22,3,21]
1068 10a­67 4 12 16 14 18 2 20 6 10 8 [211,3,3]
1069 10a­38 4 10 14 12 18 2 16 6 20 8 [211,21,21]
1070 10a­22 4 8 16 10 2 18 20 6 14 12 [22,3,2+]
1071 10a­10 4 8 12 2 18 14 6 20 10 16 [22,21,2+]
1072 10a4 4 8 10 16 2 18 20 6 14 12 [211,3,2+]
1073 10a3 4 8 10 14 2 18 16 6 20 12 [211,21,2+]
1074 10a­62 4 12 14 16 20 18 2 8 6 10 [3,3,21+]
Vodicka knot modified.svg 1075 10a­27 4 10 12 14 18 2 16 6 20 8 [21,21,21+]
1076 10a­73 4 12 18 20 14 16 2 10 8 6 [3,3,2++]
1077 10a­18 4 8 14 2 18 20 16 6 12 10 [3,21,2++]
1078 10a­17 4 8 14 2 18 16 6 12 20 10 [21,21,2++]
1079 10a­78 6 8 12 2 16 4 18 20 10 14 [(3,2)(3,2)]
1080 10a8 4 8 12 2 16 6 18 20 10 14 [(3,2)(21,2)]
1081 10a7 4 8 12 2 16 6 18 10 20 14 [(21,2)(21,2)]
1082 10a­83 6 8 14 16 4 18 20 2 10 12 [.4.2]
1083 10a­84 6 8 16 14 4 18 20 2 12 10 [.31.20]
1084 10a­50 4 10 16 14 2 8 18 20 12 6 [.22.2]
1085 10a­86 6 8 16 14 4 18 20 2 10 12 [.4.20]
1086 10a­87 6 8 14 16 4 18 20 2 12 10 [.31.2]
1087 10a­39 4 10 14 16 2 8 18 20 12 6 [.22.20]
1088 10a­11 4 8 12 14 2 16 20 18 10 6 [.21.21]
1089 10a­21 4 8 14 12 2 16 20 18 10 6 [.21.210]
1090 10a­92 6 10 14 2 16 20 18 8 4 12 [.3.2.2]
1091 10a­­106 6 10 20 14 16 18 4 8 2 12 [.3.2.20]
1092 10a­46 4 10 14 18 2 16 8 20 12 6 [.21.2.20]
1093 10a­­101 6 10 16 20 14 4 18 2 12 8 [.3.20.2]
1094 10a­91 6 10 14 2 16 18 20 8 4 12 [.30.2.2]
1095 10a­47 4 10 14 18 2 16 20 8 12 6 [.210.2.2]
1096 10a­24 4 8 18 12 2 16 20 6 10 14 [.2.21.2]
1097 10a­12 4 8 12 18 2 16 20 6 10 14 [.2.210.2]
1098 10a­96 6 10 14 18 2 16 20 4 8 12 [.2.2.2.20]
1099 10a­­103 6 10 18 14 2 16 20 8 4 12 [.2.2.20.20]
10100 10a­­104 6 10 18 14 16 4 20 8 2 12 [3:2:2]
10101 10a­45 4 10 14 18 2 16 6 20 8 12 [21:2:2]
10102 10a­97 6 10 14 18 16 4 20 2 8 12 [3:2:20]
10103 10a­­105 6 10 18 16 14 4 20 8 2 12 [30:2:2]
10104 10a­­118 6 16 12 14 18 4 20 2 8 10 [3:20:20]
10105 10a­72 4 12 16 20 18 2 8 6 10 14 [21:20:20]
10106 10a­95 6 10 14 16 18 4 20 2 8 12 [30:2:20]
10107 10a­66 4 12 16 14 18 2 8 20 10 6 [210:2:20]
10108 10a­­119 6 16 12 14 18 4 20 2 10 8 [30:20:20]
10109 10a­93 6 10 14 16 2 18 4 20 8 12 [2.2.2.2]
10110 10a­­100 6 10 16 20 14 2 18 4 8 12 [2.2.2.20]
10111 10a­98 6 10 16 14 2 18 8 20 4 12 [2.2.20.2]
10112 10a­76 6 8 10 14 16 18 20 2 4 12 [8*3]
10113 10a­36 4 10 14 12 2 16 18 20 8 6 [8*21]
10114 10a­77 6 8 10 14 16 20 18 2 4 12 [8*30]
10115 10a­94 6 10 14 16 4 18 2 20 12 8 [8*20.20]
Triquetra-heart-knot.svg 10116 10a­­120 6 16 18 14 2 4 20 8 10 12 [8*2:2]
10117 10a­99 6 10 16 14 18 4 20 2 12 8 [8*2:20]
10118 10a­88 6 8 18 14 16 4 20 2 10 12 [8*2:.2]
10119 10a­85 6 8 14 18 16 4 20 10 2 12 [8*2:.20]
Two-trefoils-on-loop doubly-interlinked 10crossings.svg 10120 10a­­102 6 10 18 12 4 16 20 8 2 14 [8*20::20]
10121 10a­90 6 10 12 20 18 16 8 2 4 14 [9*20]
10crossings-two-triquetras-joined.svg 10122 10a­89 6 10 12 14 18 16 20 2 4 8 [9*.20]
Floral fivefold knot green (geometry).svg 10123 10a­­121 8 10 12 14 16 18 20 2 4 6 [10*]
10124 10n­21 4 8 -14 2 -16 -18 -20 -6 -10 -12 [5,3,2-]
10125 10n­15 4 8 14 2 -16 -18 6 -20 -10 -12 [5,21,2-]
10126 10n­17 4 8 -14 2 -16 -18 -6 -20 -10 -12 [41,3,2-]
10127 10n­16 4 8 -14 2 16 18 -6 20 10 12 [41,21,2-]
10128 10n­22 4 8 -14 2 -16 -18 -20 -6 -12 -10 [32,3,2-]
10129 10n­18 4 8 14 2 -16 -18 6 -20 -12 -10 [32,21,-2]
10130 10n­20 4 8 -14 2 -16 -18 -6 -20 -12 -10 [311,3,2-]
10131 10n­19 4 8 -14 2 16 18 -6 20 12 10 [311,21,2-]
Knot-10-132-sm.png 10132 10n­13 4 8 -12 2 -16 -6 -20 -18 -10 -14 [23,3,2-]
10133 10n4 4 8 12 2 -14 -18 6 -20 -10 -16 [23,21,2-]
10134 10n6 4 8 -12 2 -14 -18 -6 -20 -10 -16 [221,3,2-]
10135 10n5 4 8 -12 2 14 18 -6 20 10 16 [221,21,2-]
10136 10n3 4 8 10 -14 2 -18 -6 -20 -12 -16 [22,22,2-]
10137 10n2 4 8 10 -14 2 -16 -18 -6 -20 -12 [22,211,2-]
10138 10n1 4 8 10 -14 2 16 18 -6 20 12 [211,211,2-]
10139 10n­27 4 10 -14 -16 2 -18 -20 -6 -8 -12 [4,3,3-]
10140 10n­29 4 10 -14 -16 2 18 20 -8 -6 12 [4,3,21-]
10141 10n­25 4 10 -14 -16 2 18 -8 -6 20 12 [4,21,21-]
10142 10n­30 4 10 -14 -16 2 -18 -20 -8 -6 -12 [31,3,3-]
10143 10n­26 4 10 -14 -16 2 -18 -8 -6 -20 -12 [31,3,21-]
10144 10n­28 4 10 14 16 2 -18 -20 8 6 -12 [31,21,21-]
10145 10n­14 4 8 -12 -18 2 -16 -20 -6 -10 -14 [22,3,3-]
10146 10n­23 4 8 -18 -12 2 -16 -20 -6 -10 -14 [22,21,21-]
10147 10n­24 4 10 -14 12 2 16 18 -20 8 -6 [211,3,21-]
10148 10n­12 4 8 -12 2 -16 -6 -18 -20 -10 -14 [(3,2)(3,2-)]
10149 10n­11 4 8 -12 2 16 -6 18 20 10 14 [(3,2)(21,2-)]
10150 10n9 4 8 -12 2 -16 -6 -18 -10 -20 -14 [(21,2)(3,2-)]
10151 10n8 4 8 -12 2 16 -6 18 10 20 14 [(21,2)(21,2-)]
10152 10n­36 6 8 12 2 -16 4 -18 -20 -10 -14 [(3,2)-(3,2)]
10153 10n­10 4 8 12 2 -16 6 -18 -20 -10 -14 [(3,2)-(21,2)]
10154 10n7 4 8 12 2 -16 6 -18 -10 -20 -14 [(21,2)-(21,2)]
10155 10n­39 6 10 14 16 18 4 -20 2 8 -12 [-3:2:2]
10156 10n­32 4 12 16 -14 18 2 -8 20 10 6 [-3:2:20]
10157 10n­42 6 -10 -18 14 -2 -16 20 8 -4 12 [-3:20:20]
10158 10n­41 6 -10 -16 14 -2 -18 8 20 -4 -12 [-30:2:2]
10159 10n­34 6 8 10 14 16 -18 -20 2 4 -12 [-30:2:20]
10160 10n­33 4 12 -16 -14 -18 2 -8 -20 -10 -6 [-30:20:20]
10-161 knot (Perko 1).svg 10161[lower-alpha 1] 10n­31 4 12 -16 14 -18 2 8 -20 -10 -6 [3:-20:-20]
10162[lower-alpha 2] 10n­40 6 10 14 18 16 4 -20 2 8 -12 [-30:-20:-20]
10163[lower-alpha 3] 10n­35 6 8 10 14 16 -20 -18 2 4 -12 [8*-30]
10164[lower-alpha 4] 10n­38 6 -10 -12 14 -18 -16 20 -2 -4 -8 [8*2:-20]
10165[lower-alpha 5] 10n­37 6 8 14 18 16 4 -20 10 2 -12 [8*2:.-20]

Higher

Kinoshita–Terasaka & Conway knots
  • Conway knot 11n34
  • Kinoshita–Terasaka knot 11n42

Table of prime links

Seven or fewer crossings

Name Picture Alexander–
Briggs–
Rolfsen
Dowker–
Thistlethwaite
Dowker
notation
Conway
notation
Unlink Unlink.png 021
Hopf link Hopf Link.png 221 L2a1 [2]
Solomon's
knot
Solomons-knot-square.svg 421 L4a1 [4]
Whitehead
link
Whitehead-link.svg 521 L5a1 [212]
L6a1 623 L6a1
L6a2 622 L6a2
L6a3 621 L6a3
Borromean
rings
Borromean Rings Illusion.png 632 L6a4 [.1]
L6a5 631 L6a5
L6n1 Valknut-Symbol-3linkchain-closed.svg 633 L6n1
L7a1 726 L7a1
L7a2 725 L7a2
L7a3 724 L7a3
L7a4 723 L7a4
L7a5 722 L7a5
L7a6 721 L7a6
L7a7 731 L7a7
L7n1 727 L7n1
L7n2 728 L7n2 (6,-8|-10,12,-14,2,-4)

Higher

(36,3)-torus link
Picture Alexander–
Briggs–
Rolfsen
Dowker–
Thistlethwaite
Dowker
notation
Conway
notation
3D-Link.PNG 821 L8a14
Brunnian-L10a140.svg L10a140 [.3:30]

See also

Notes

  1. Originally listed as both 10161 and 10162 in the Rolfsen table. The error was discovered by Kenneth Perko (see Perko pair).
  2. Listed as 10163 in the Rolfsen table.
  3. Listed as 10164 in the Rolfsen table.
  4. Listed as 10165 in the Rolfsen table.
  5. Listed as 10166 in the Rolfsen table.

External links