Matrix F-distribution

From HandWiki
Short description: Multivariate continuous probability distribution


Matrix F
Notation (Ψ,ν,δ)
Parameters Ψ>0, p×p scale matrix (pos. def.)
ν>p1 degrees of freedom (real)
δ>0 degrees of freedom (real)
Support 𝐗 is p × p positive definite matrix
PDF

Γp(ν+δ+p12)Γp(ν2)Γk(δ+p12)|Ψ|ν2|𝐗|νp12|Ip+𝐗Ψ1|ν+δ+p12

Mean νδ2Ψ, for δ>2.
Variance see below

In statistics, the matrix F distribution (or matrix variate F distribution) is a matrix variate generalization of the F distribution which is defined on real-valued positive-definite matrices. In Bayesian statistics it can be used as the semi conjugate prior for the covariance matrix or precision matrix of multivariate normal distributions, and related distributions.[1][2][3][4]

Density

The probability density function of the matrix F distribution is:

f𝐗(𝐗;Ψ,ν,δ)=Γp(ν+δ+p12)Γp(ν2)Γk(δ+p12)|Ψ|ν2|𝐗|νp12|Ip+𝐗Ψ1|ν+δ+p12

where 𝐗 and Ψ are p×p positive definite matrices, || is the determinant, Γp(·) is the multivariate gamma function, and Ip is the p × p identity matrix.

Properties

Construction of the distribution

  • The standard matrix F distribution, with an identity scale matrix 𝐈p, was originally derived by.[1] When considering independent distributions,

Φ1𝒲(𝐈p,ν) and Φ2𝒲(𝐈p,δ+k1), and define 𝐗=Φ21/2Φ1Φ21/2, then 𝐗(𝐈p,ν,δ).

  • If 𝐗|Φ𝒲1(Φ,δ+p1) and Φ𝒲(Ψ,ν), then, after integrating out Φ, 𝐗 has a matrix F-distribution, i.e.,

f𝐗|Φ,ν,δ(𝐗)=f𝐗|Φ,δ+p1(𝐗)fΦ|Ψ,ν(Φ)dΦ.
This construction is useful to construct a semi-conjugate prior for a covariance matrix.[3]

  • If 𝐗|Φ𝒲(Φ,ν) and Φ𝒲1(Ψ,δ+p1), then, after integrating out Φ, 𝐗 has a matrix F-distribution, i.e.,
    f𝐗|Ψ,ν,δ(𝐗)=f𝐗|Φ,ν(𝐗)fΦ|Ψ,δ+p1(Φ)dΦ.
    This construction is useful to construct a semi-conjugate prior for a precision matrix.[4]

Marginal distributions from a matrix F distributed matrix

Suppose 𝐀F(Ψ,ν,δ) has a matrix F distribution. Partition the matrices 𝐀 and Ψ conformably with each other

𝐀=[𝐀11𝐀12𝐀21𝐀22],Ψ=[Ψ11Ψ12Ψ21Ψ22]

where 𝐀ij and Ψij are pi×pj matrices, then we have 𝐀11F(Ψ11,ν,δ).

Moments

Let XF(Ψ,ν,δ).

The mean is given by: E(𝐗)=νδ2Ψ.

The (co)variance of elements of 𝐗 are given by:[3]

cov(Xij,Xml)=ΨijΨml2ν2+2ν(δ2)(δ1)(δ2)2(δ4)+(ΨilΨjm+ΨimΨjl)(2ν+ν2(δ2)+ν(δ2)(δ1)(δ2)2(δ4)+ν(δ2)2).
  • The matrix F-distribution has also been termed the multivariate beta II distribution.[5] See also,[6] for a univariate version.
  • A univariate version of the matrix F distribution is the F-distribution. With p=1 (i.e. univariate) and Ψ=1, and x=𝐗, the probability density function of the matrix F distribution becomes the univariate (unscaled) F distribution:
    fxν,δ(x)=B(ν2,δ2)1(νδ)ν/2xν/21(1+νδx)(ν+δ)/2,
  • In the univariate case, with p=1 and x=𝐗, and when setting ν=1, then x follows a half t distribution with scale parameter ψ and degrees of freedom δ. The half t distribution is a common prior for standard deviations[7]

See also

References

  1. 1.0 1.1 Olkin, Ingram; Rubin, Herman (1964-03-01). "Multivariate Beta Distributions and Independence Properties of the Wishart Distribution" (in en). The Annals of Mathematical Statistics 35 (1): 261–269. doi:10.1214/aoms/1177703748. ISSN 0003-4851. http://projecteuclid.org/euclid.aoms/1177703748. 
  2. Dawid, A. P. (1981). "Some matrix-variate distribution theory: Notational considerations and a Bayesian application" (in en). Biometrika 68 (1): 265–274. doi:10.1093/biomet/68.1.265. ISSN 0006-3444. https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/68.1.265. 
  3. 3.0 3.1 3.2 Mulder, Joris; Pericchi, Luis Raúl (2018-12-01). "The Matrix-F Prior for Estimating and Testing Covariance Matrices". Bayesian Analysis 13 (4). doi:10.1214/17-BA1092. ISSN 1936-0975. 
  4. 4.0 4.1 Williams, Donald R.; Mulder, Joris (2020-12-01). "Bayesian hypothesis testing for Gaussian graphical models: Conditional independence and order constraints" (in en). Journal of Mathematical Psychology 99: 102441. doi:10.1016/j.jmp.2020.102441. 
  5. Tan, W. Y. (1969-03-01). "Note on the Multivariate and the Generalized Multivariate Beta Distributions" (in en). Journal of the American Statistical Association 64 (325): 230–241. doi:10.1080/01621459.1969.10500966. ISSN 0162-1459. http://www.tandfonline.com/doi/abs/10.1080/01621459.1969.10500966. 
  6. Pérez, María-Eglée; Pericchi, Luis Raúl; Ramírez, Isabel Cristina (2017-09-01). "The Scaled Beta2 Distribution as a Robust Prior for Scales". Bayesian Analysis 12 (3). doi:10.1214/16-BA1015. ISSN 1936-0975. 
  7. Gelman, Andrew (2006-09-01). "Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper)". Bayesian Analysis 1 (3). doi:10.1214/06-BA117A. ISSN 1936-0975.