Medicine:Diabetic foot

From HandWiki
Diabetic foot
Other namesDiabetic foot syndrome
Neuropathic heel ulcer diabetic.jpg
Neuropathic diabetic foot ulcer
SpecialtyInfectious disease, endocrinology, surgery

A diabetic foot disease is any condition that results directly from peripheral artery disease (PAD) or sensory neuropathy affecting the feet of people living with diabetes. Diabetic foot conditions can be acute or chronic complications of diabetes.[1] Presence of several characteristic diabetic foot pathologies such as infection, diabetic foot ulcer and neuropathic osteoarthropathy is called diabetic foot syndrome. The resulting bone deformity is known as Charcot foot.

Due to advanced peripheral nerve dysfunction associated with diabetes (diabetic neuropathy), patients' feet have a dryness of the skin and a reduced ability to feel pain (nociception). Hence, minor injuries may remain undiscovered and subsequently progress to a full-thickness diabetic foot ulcer. Moreover, foot surgery is well tolerated without anaesthesia.[2] The feet's insensivity to pain can easily be established by 512 mN quantitative pinprick stimulation.[3] In diabetes, peripheral nerve dysfunction can be combined with peripheral artery disease (PAD) causing poor blood circulation to the extremities (diabetic angiopathy).[4] Around half of the patients with a diabetic foot ulcer have co-existing PAD.[5] Vitamin D deficiency has been recently found to be associated with diabetic foot infections and increased risk of amputations and deaths.[6] Research estimates that the lifetime incidence of foot ulcers within the diabetic community is around 15% and may become as high as 25%.[7] Where wounds take a long time to heal, infection may set in, spreading to bones and joints, and lower limb amputation may be necessary. Foot infection is the most common cause of non-traumatic amputation in people with diabetes.[8]

Prevention

Prevention of diabetic foot may include optimising metabolic control via the regulation of blood glucose levels; identification and screening of people at high risk for diabetic foot ulceration, especially those with advanced painless neuropathy; and patient education in order to promote foot self-examination and foot care knowledge. Patients would be taught routinely to inspect their feet for hyperkeratosis, fungal infection, skin lesions and foot deformities. Control of footwear is also important as repeated trauma from tight shoes can be a triggering factor,[9] especially where peripheral neuropathy is present. Evidence is limited that low-quality patient education courses have a long-term preventative impact.[10]

Foot screening guidelines have been previously reviewed, with a view to examining their completeness in terms of advancement in clinical practice, improvements in technology, and changes in socio-cultural structure. Results suggested that limitations of available guidelines and lack of evidence on which the guidelines were based were responsible for the gaps between guidelines, standard clinical practice, and development of complications. It concluded that for the development of standard recommendations and everyday clinical practice, it was necessary to pay more attention to both the limitations of guidelines and the underlying evidence.[11]

According to a 2011 meta-analysis of randomised controlled trials, only foot temperature-guided avoidance therapy was found beneficial in preventing ulceration.[12]

Prediction

Monitoring a person's feet can help in predicting the likelihood of developing ulcers. A common method for this is using a special thermometer to look for spots on the foot that have higher temperature which indicate the possibility of an ulcer developing.[13] At the same time there is no strong scientific evidence supporting the effectiveness of at-home foot temperature monitoring.[14]

The current guideline in the United Kingdom recommends collecting 8-10 pieces of information for predicting the development of foot ulcers.[15] A simpler method proposed by researchers provides a more detailed risk score based on three pieces of information (insensitivity, foot pulse, previous history of ulcers or amputation). This method is not meant to replace people regularly checking their own feet but complement it.[13][16]

Treatment

Treatment of diabetic foot ulceration can be challenging and prolonged; it may include orthopaedic appliances, surgery and antimicrobial drugs and topical dressings.[10]

Most diabetic foot infections (DFIs) require treatment with systemic antibiotics. The choice of the initial antibiotic treatment depends on several factors such as the severity of the infection, whether the patient has received another antibiotic treatment for it, and whether the infection has been caused by a micro-organism that is known to be resistant to usual antibiotics (e.g. MRSA). The objective of antibiotic therapy is to stop the infection and ensure it does not spread.[17]

It is unclear whether any particular antibiotic is better than any other for curing infection or avoiding amputation. One trial suggested that ertapenem with or without vancomycin is more effective than tigecycline for resolving DFIs. It is also generally unclear whether different antibiotics are associated with more or fewer adverse effects.[8]

It is recommended however that the antibiotics used for treatment of diabetic foot ulcers should be used after deep tissue culture of the wound. Tissue culture and not pus swab culture should be done. Antibiotics should be used at correct doses in order to prevent the emergence of drug resistance. It is unclear if local antibiotics improve outcomes after surgery.[18]

See also

  • Diabetic dermopathy
  • Diabetic foot infection

References

  1. "Factors Related to Severity of Diabetic Foot Ulcer: A Systematic Review". Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 13: 1835–1842. 2020. doi:10.2147/DMSO.S256243. PMID 32547145. 
  2. "Foot surgery without anesthesia in diabetic patients with sensory neuropathy: A short series". Foot & Ankle Surgery: Techniques, Reports & Cases (Elsevier BV) 2 (1): 100128. 2022. doi:10.1016/j.fastrc.2021.100128. ISSN 2667-3967. 
  3. "A Novel Diagnostic Test for End-Stage Sensory Failure Associated With Diabetic Foot Ulceration: Proof-of-Principle Study". J Diabetes Sci Technol 15 (3): 622–629. May 2021. doi:10.1177/1932296819900256. PMID 31948277. 
  4. "Hidden dangers revealed by misdiagnosed peripheral arterial disease using ABPI measurement". Diabetes Res Clin Pract 102 (2): 112–6. November 2013. doi:10.1016/j.diabres.2013.10.006. PMID 24209599. 
  5. International Working Group on the Diabetic Foot (2015). "Guidance on the diagnosis, prognosis and management of peripheral artery disease in patients with foot ulcers in diabetes". http://iwgdf.org/guidelines/guidance-on-pad-2015/. 
  6. Darlington, C., Kumar, S., Jagdish, S., Sridhar, M. Evaluation of Serum Vitamin D Levels in Diabetic Foot Infections: A Cross-Sectional Study in a Tertiary Care Center in South India. Iranian Journal of Medical Sciences, 2019; 44(6): 474-482. doi: 10.30476/ijms.2018.44951
  7. "Preventing foot ulcers in patients with diabetes". JAMA 293 (2): 217–28. January 2005. doi:10.1001/jama.293.2.217. PMID 15644549. 
  8. 8.0 8.1 "Systemic antibiotics for treating diabetic foot infections". Cochrane Database Syst Rev 2015 (9): CD009061. September 2015. doi:10.1002/14651858.CD009061.pub2. PMID 26337865. 
  9. "[Diabetic foot syndrome]" (in German). Herz 29 (1): 104–15. February 2004. doi:10.1007/s00059-004-2534-z. PMID 14968346. 
  10. 10.0 10.1 "Patient education for preventing diabetic foot ulceration". Cochrane Database of Systematic Reviews 2014 (12): CD001488. 2014. doi:10.1002/14651858.CD001488.pub5. PMID 25514250. 
  11. "A Critical Evaluation of Existing Diabetic Foot Screening Guidelines". Rev Diabet Stud 13 (2–3): 158–186. 2016. doi:10.1900/RDS.2016.13.158. PMID 28012281. 
  12. "Beyond the monofilament for the insensate diabetic foot: a systematic review of randomized trials to prevent the occurrence of plantar foot ulcers in patients with diabetes". Diabetes Care 34 (4): 1041–6. April 2011. doi:10.2337/dc10-1666. PMID 21447666. 
  13. 13.0 13.1 "Simple tool identifies the people with diabetes most likely to develop foot ulcers" (in en). NIHR Evidence (National Institute for Health and Care Research). 2022-06-21. doi:10.3310/nihrevidence_51316. https://evidence.nihr.ac.uk/alert/simple-tool-predicts-foot-ulcers-in-diabetes/. 
  14. "Efficacy of at home monitoring of foot temperature for risk reduction of diabetes-related foot ulcer: A meta-analysis". Diabetes Metab Res Rev 38 (6): e3549. September 2022. doi:10.1002/dmrr.3549. PMID 35605998. 
  15. "Diabetic foot problems: prevention and management". 26 August 2015. https://www.nice.org.uk/guidance/ng19/chapter/Recommendations#assessing-the-risk-of-developing-a-diabetic-foot-problem. 
  16. "Development and validation of a clinical prediction rule for development of diabetic foot ulceration: an analysis of data from five cohort studies". BMJ Open Diabetes Res Care 9 (1): e002150. May 2021. doi:10.1136/bmjdrc-2021-002150. PMID 34035053. 
  17. "Diabetic Foot Infection". American Family Physician 78 (1): 71–79. July 2008. PMID 18649613. https://www.aafp.org/afp/2008/0701/p71.html. Retrieved 8 October 2020. 
  18. "A systematic review of local antibiotic devices used to improve wound healing following the surgical management of foot infections in diabetics". Bone Joint J 100-B (11): 1409–1415. November 2018. doi:10.1302/0301-620X.100B11.BJJ-2018-0720. PMID 30418057. 

External links

Classification