Normal-inverse Gaussian distribution
Parameters |
[math]\displaystyle{ \mu }[/math] location (real) [math]\displaystyle{ \alpha }[/math] tail heaviness (real) [math]\displaystyle{ \beta }[/math] asymmetry parameter (real) [math]\displaystyle{ \delta }[/math] scale parameter (real) [math]\displaystyle{ \gamma = \sqrt{\alpha^2 - \beta^2} }[/math] | ||
---|---|---|---|
Support | [math]\displaystyle{ x \in (-\infty; +\infty)\! }[/math] | ||
[math]\displaystyle{ \frac{\alpha\delta K_1 \left(\alpha\sqrt{\delta^2 + (x - \mu)^2}\right)}{\pi \sqrt{\delta^2 + (x - \mu)^2}} \; e^{\delta \gamma + \beta (x - \mu)} }[/math] [math]\displaystyle{ K_j }[/math] denotes a modified Bessel function of the second kind[1] | |||
Mean | [math]\displaystyle{ \mu + \delta \beta / \gamma }[/math] | ||
Variance | [math]\displaystyle{ \delta\alpha^2/\gamma^3 }[/math] | ||
Skewness | [math]\displaystyle{ 3 \beta /(\alpha \sqrt{\delta \gamma}) }[/math] | ||
Kurtosis | [math]\displaystyle{ 3(1+4 \beta^2/\alpha^2)/(\delta\gamma) }[/math] | ||
MGF | [math]\displaystyle{ e^{\mu z + \delta (\gamma - \sqrt{\alpha^2 -(\beta +z)^2})} }[/math] | ||
CF | [math]\displaystyle{ e^{i\mu z + \delta (\gamma - \sqrt{\alpha^2 -(\beta +iz)^2})} }[/math] |
The normal-inverse Gaussian distribution (NIG, also known as the normal-Wald distribution) is a continuous probability distribution that is defined as the normal variance-mean mixture where the mixing density is the inverse Gaussian distribution. The NIG distribution was noted by Blaesild in 1977 as a subclass of the generalised hyperbolic distribution discovered by Ole Barndorff-Nielsen.[2] In the next year Barndorff-Nielsen published the NIG in another paper.[3] It was introduced in the mathematical finance literature in 1997.[4]
The parameters of the normal-inverse Gaussian distribution are often used to construct a heaviness and skewness plot called the NIG-triangle.[5]
Properties
Moments
The fact that there is a simple expression for the moment generating function implies that simple expressions for all moments are available.[6][7]
Linear transformation
This class is closed under affine transformations, since it is a particular case of the Generalized hyperbolic distribution, which has the same property. If
- [math]\displaystyle{ x\sim\mathcal{NIG}(\alpha,\beta,\delta,\mu) \text{ and } y=ax+b, }[/math]
then[8]
- [math]\displaystyle{ y\sim\mathcal{NIG}\bigl(\frac{\alpha}{\left|a\right|},\frac{\beta}{a},\left|a\right|\delta,a\mu+b\bigr). }[/math]
Summation
This class is infinitely divisible, since it is a particular case of the Generalized hyperbolic distribution, which has the same property.
Convolution
The class of normal-inverse Gaussian distributions is closed under convolution in the following sense:[9] if [math]\displaystyle{ X_1 }[/math] and [math]\displaystyle{ X_2 }[/math] are independent random variables that are NIG-distributed with the same values of the parameters [math]\displaystyle{ \alpha }[/math] and [math]\displaystyle{ \beta }[/math], but possibly different values of the location and scale parameters, [math]\displaystyle{ \mu_1 }[/math], [math]\displaystyle{ \delta_1 }[/math] and [math]\displaystyle{ \mu_2, }[/math] [math]\displaystyle{ \delta_2 }[/math], respectively, then [math]\displaystyle{ X_1 + X_2 }[/math] is NIG-distributed with parameters [math]\displaystyle{ \alpha, }[/math] [math]\displaystyle{ \beta, }[/math][math]\displaystyle{ \mu_1+\mu_2 }[/math] and [math]\displaystyle{ \delta_1 + \delta_2. }[/math]
Related distributions
The class of NIG distributions is a flexible system of distributions that includes fat-tailed and skewed distributions, and the normal distribution, [math]\displaystyle{ N(\mu,\sigma^2), }[/math] arises as a special case by setting [math]\displaystyle{ \beta=0, \delta=\sigma^2\alpha, }[/math] and letting [math]\displaystyle{ \alpha\rightarrow\infty }[/math].
Stochastic process
The normal-inverse Gaussian distribution can also be seen as the marginal distribution of the normal-inverse Gaussian process which provides an alternative way of explicitly constructing it. Starting with a drifting Brownian motion (Wiener process), [math]\displaystyle{ W^{(\gamma)}(t)=W(t)+\gamma t }[/math], we can define the inverse Gaussian process [math]\displaystyle{ A_t=\inf\{s\gt 0:W^{(\gamma)}(s)=\delta t\}. }[/math] Then given a second independent drifting Brownian motion, [math]\displaystyle{ W^{(\beta)}(t)=\tilde W(t)+\beta t }[/math], the normal-inverse Gaussian process is the time-changed process [math]\displaystyle{ X_t=W^{(\beta)}(A_t) }[/math]. The process [math]\displaystyle{ X(t) }[/math] at time [math]\displaystyle{ t=1 }[/math] has the normal-inverse Gaussian distribution described above. The NIG process is a particular instance of the more general class of Lévy processes.
As a variance-mean mixture
Let [math]\displaystyle{ \mathcal{IG} }[/math] denote the inverse Gaussian distribution and [math]\displaystyle{ \mathcal{N} }[/math] denote the normal distribution. Let [math]\displaystyle{ z\sim\mathcal{IG}(\delta,\gamma) }[/math], where [math]\displaystyle{ \gamma=\sqrt{\alpha^2-\beta^2} }[/math]; and let [math]\displaystyle{ x\sim\mathcal{N}(\mu+\beta z,z) }[/math], then [math]\displaystyle{ x }[/math] follows the NIG distribution, with parameters, [math]\displaystyle{ \alpha,\beta,\delta,\mu }[/math]. This can be used to generate NIG variates by ancestral sampling. It can also be used to derive an EM algorithm for maximum-likelihood estimation of the NIG parameters.[10]
References
- ↑ Ole E Barndorff-Nielsen, Thomas Mikosch and Sidney I. Resnick, Lévy Processes: Theory and Applications, Birkhäuser 2013 Note: in the literature this function is also referred to as Modified Bessel function of the third kind
- ↑ Barndorff-Nielsen, Ole (1977). "Exponentially decreasing distributions for the logarithm of particle size". Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences (The Royal Society) 353 (1674): 401–409. doi:10.1098/rspa.1977.0041.
- ↑ O. Barndorff-Nielsen, Hyperbolic Distributions and Distributions on Hyperbolae, Scandinavian Journal of Statistics 1978
- ↑ O. Barndorff-Nielsen, Normal Inverse Gaussian Distributions and Stochastic Volatility Modelling, Scandinavian Journal of Statistics 1997
- ↑ S.T Rachev, Handbook of Heavy Tailed Distributions in Finance, Volume 1: Handbooks in Finance, Book 1, North Holland 2003
- ↑ Erik Bolviken, Fred Espen Beth, Quantification of Risk in Norwegian Stocks via the Normal Inverse Gaussian Distribution, Proceedings of the AFIR 2000 Colloquium
- ↑ Anna Kalemanova, Bernd Schmid, Ralf Werner, The Normal inverse Gaussian distribution for synthetic CDO pricing, Journal of Derivatives 2007
- ↑ Paolella, Marc S (2007). Intermediate Probability: A computational Approach. John Wiley & Sons.
- ↑ Ole E Barndorff-Nielsen, Thomas Mikosch and Sidney I. Resnick, Lévy Processes: Theory and Applications, Birkhäuser 2013
- ↑ Karlis, Dimitris (2002). "An EM Type Algorithm for ML estimation for the Normal–Inverse Gaussian Distribution". Statistics and Probability Letters 57: 43-52.
Original source: https://en.wikipedia.org/wiki/Normal-inverse Gaussian distribution.
Read more |