Orthotransversal

From HandWiki

In Euclidean geometry, the orthotransversal of a point is the line defined as follows.[1][2]

For a triangle ABC and a point P, three orthotraces, intersections of lines BC, CA, AB and perpendiculars of AP, BP, CP through P respectively are collinear. The line which includes these three points is called the orthotransversal of P. In 1933, Indian mathematician K. Satyanarayana called this line an "ortho-line".[3]

Existence of it can proved by various methods such as a pole and polar, the dual of Desargues' involution theorem [ru; ru; Теорема Дезарга об инволюции] , and the Newton line theorem.[4][5]

The tripole of the orthotransversal is called the orthocorrespondent of P,[6][7] And the transformation PP, the orthocorrespondent of P is called the orthocorrespondence.[8]

Example

  • The orthotransversal of the Feuerbach point is the OI line.[9][10]
  • The orthotransversal of the Jerabek center is the Euler line.
  • Orthocorrespondents of Fermat points are themselves.[11]
  • The orthocorrespondent of the Kiepert center X(115) is the focus of the Kiepert parabola X(110).

Properties

  • There are exactly two points which share the orthoccorespondent.[10] This pair is called the antiorthocorrespondents.[1]
  • The orthotransversal of a point on the circumcircle of the reference triangle ABC passes through the circumcenter of ABC.[1] Furthermore, the Steiner line, the orthotransversal, and the trilinear polar are concurrent.[12]
  • The orthotransversals of a point P on the Euler line is perpendicular to the line through the isogonal conjugate and the anticomplement of P.[13]
  • The orthotransversal of the nine-point center is perpendicular to the Euler line of the tangential triangle.[14]
  • For the quadrangle ABCD, 4 orthotransversals for each component triangles and each remaining vertexes are concurrent.[15]
  • Barycentric coordinates of the orthocorrespondent of P(p: q: r) are

p(pSA+qSB+rSC)+a2qr:q(pSAqSB+rSC)+b2rp:r(pSA+qSBrSC)+c2pq,

where SA,SB,SC are Conway notation.

Orthopivotal cubic

The Locus of points P that P, P, and Q are collinear is a cubic curve. This is called the orthopivotal cubic of Q, O(Q).[16] Every orthopivotal cubic passes through two Fermat points.

Example

See also

Notes

  1. 1.0 1.1 1.2 Gibert, Bernard (2003). "Orthocorrespondence and Orthopivotal Cubics". Forum Geometricorum 3. http://www.bernard-gibert.fr/files/Resources/volume3a.pdf. 
  2. Eliud Lozada, César. "Extended glossary". https://faculty.evansville.edu/ck6/encyclopedia/ext_glossary.html. 
  3. Satyanarayana, K. (1933). "On Conics Having a Common Self-conjugate Triangle". The Mathematics Student 5: 19. https://dspace.bcu-iasi.ro/handle/123456789/44183. 
  4. Cohl, Telv. "Extension of orthotransversal". https://artofproblemsolving.com/community/q1h507541p2851090. 
  5. "Existence of Orthotransversal". https://artofproblemsolving.com/community/q1h2745598p23957981. 
  6. Bernard, Gibert (2003). "Antiorthocorrespondents of Circumconics". Forum Geometricorum 3. 
  7. Gibert, Bernard; van Lamoen, Floor (2003). "The Parasix Configuration and Orthocorrespondence". Forum Geometricorum 3: 173. 
  8. Evers, Manfred (2012). "Generalizing Orthocorrespondence". Forum Geometricorum 12. 
  9. Li4; S⊗; 和輝. "幾何引理維基" (in zh). https://lii4.github.io/Geometry_Lemma_Wiki.pdf. 
  10. 10.0 10.1 Mathworld Orthocorrespondent.
  11. dagezjm. "Pedal triangle". https://artofproblemsolving.com/community/q1h2175301p17775874. 
  12. Li4. "圓錐曲線" (in zh). https://lii4.github.io/Conic.pdf. 
  13. Li4; S. "張志煥截線" (in zh). https://permutation-chang.github.io/Permutationline.pdf. 
  14. S. "正交截線" (in zh). https://permutation-chang.github.io/Orthotransversal.pdf. 
  15. "QA-Tf14: QA-Orthotransversal Point". https://chrisvantienhoven.nl/qa-items/qa-transformations/qa-tf14. 
  16. "Orthopivotal Cubics". http://www.bernard-gibert.fr/gloss/orthopivotalcubi.html. 
  17. Gibert, Bernard. "Neuberg Cubics". http://bernard-gibert.fr/files/Resources/neubergs.pdf. 
  18. "K053". http://bernard-gibert.fr/Exemples/k053.html. 

References

  • Pohoata, Cosmin; Zajic, Vladimir (2008). "Generalization of the Apollonius Circles". arXiv:0807.1131 [math.HO].
  • Evers, Manfred (2019). "On the Geometry of a Triangle in the Elliptic and in the Extended Hyperbolic Plane". arXiv:1908.11134 [math.MG].