Overring
Algebraic structure → Ring theory Ring theory |
---|
In mathematics, an overring of an integral domain contains the integral domain, and the integral domain's field of fractions contains the overring. Overrings provide an improved understanding of different types of rings and domains.
Definition
In this article, all rings are commutative rings, and ring and overring share the same identity element.
Let [math]\displaystyle{ Q(A) }[/math] represent the field of fractions of an integral domain [math]\displaystyle{ A }[/math]. Ring [math]\displaystyle{ B }[/math] is an overring of integral domain [math]\displaystyle{ A }[/math] if [math]\displaystyle{ A }[/math] is a subring of [math]\displaystyle{ B }[/math] and [math]\displaystyle{ B }[/math] is a subring of the field of fractions [math]\displaystyle{ Q(A) }[/math];[1]:167 the relationship is [math]\displaystyle{ A \subseteq B \subseteq Q(A) }[/math].[2]:373
Properties
Ring of fractions
The rings [math]\displaystyle{ R_{A},S_{A},T_{A} }[/math] are the rings of fractions of rings [math]\displaystyle{ R,S,T }[/math] by multiplicative set [math]\displaystyle{ A }[/math].[3]:46 Assume [math]\displaystyle{ T }[/math] is an overring of [math]\displaystyle{ R }[/math] and [math]\displaystyle{ A }[/math] is a multiplicative set in [math]\displaystyle{ R }[/math]. The ring [math]\displaystyle{ T_{A} }[/math] is an overring of [math]\displaystyle{ R_{A} }[/math]. The ring [math]\displaystyle{ T_{A} }[/math] is the total ring of fractions of [math]\displaystyle{ R_{A} }[/math] if every nonunit element of [math]\displaystyle{ T_{A} }[/math] is a zero-divisor.[4]:52-53 Every overring of [math]\displaystyle{ R_{A} }[/math] contained in [math]\displaystyle{ T_{A} }[/math] is a ring [math]\displaystyle{ S_{A} }[/math], and [math]\displaystyle{ S }[/math] is an overring of [math]\displaystyle{ R }[/math].[4]:52-53 Ring [math]\displaystyle{ R_{A} }[/math] is integrally closed in [math]\displaystyle{ T_{A} }[/math] if [math]\displaystyle{ R }[/math] is integrally closed in [math]\displaystyle{ T }[/math].[4]:52-53
Noetherian domain
Definitions
A Noetherian ring satisfies the 3 equivalent finitenss conditions i) every ascending chain of ideals is finite, ii) every non-empty family of ideals has a maximal element and iii) every ideal has a finite basis.[3]:199
An integral domain is a Dedekind domain if every ideal of the domain is a finite product of prime ideals.[3]:270
A ring's restricted dimension is the maximum rank among the ranks of all prime ideals that contain a regular element.[4]:52
A ring [math]\displaystyle{ R }[/math] is locally nilpotentfree if every ring [math]\displaystyle{ R_{M} }[/math] with maximal ideal [math]\displaystyle{ M }[/math] is free of nilpotent elements or a ring with every nonunit a zero divisor.[4]:52
An affine ring is the homomorphic image of a polynomial ring over a field.[4]:58
Properties
Every overring of a Dedekind ring is a Dedekind ring.[5][6]
Every overrring of a direct sum of rings whose non-unit elements are all zero-divisors is a Noetherian ring.[4]:53
Every overring of a Krull 1-dimensional Noetherian domain is a Noetherian ring.[4]:53
These statements are equivalent for Noetherian ring [math]\displaystyle{ R }[/math] with integral closure [math]\displaystyle{ \bar{R} }[/math].[4]:57
- Every overring of [math]\displaystyle{ R }[/math] is a Noetherian ring.
- For each maximal ideal [math]\displaystyle{ M }[/math] of [math]\displaystyle{ R }[/math], every overring of [math]\displaystyle{ R_{M} }[/math] is a Noetherian ring.
- Ring [math]\displaystyle{ R }[/math] is locally nilpotentfree with restricted dimension 1 or less.
- Ring [math]\displaystyle{ \bar{R} }[/math] is Noetherian, and ring [math]\displaystyle{ R }[/math] has restricted dimension 1 or less.
- Every overring of [math]\displaystyle{ \bar{R} }[/math] is integrally closed.
These statements are equivalent for affine ring [math]\displaystyle{ R }[/math] with integral closure [math]\displaystyle{ \bar{R} }[/math].[4]:58
- Ring [math]\displaystyle{ R }[/math] is locally nilpotentfree.
- Ring [math]\displaystyle{ \bar{R} }[/math] is a finite [math]\displaystyle{ \operatorname{R -} }[/math]module.
- Ring [math]\displaystyle{ \bar{R} }[/math] is Noetherian.
An integrally closed local ring [math]\displaystyle{ R }[/math] is an integral domain or a ring whose non-unit elements are all zero-divisors.[4]:58
A Noetherian integral domain is a Dedekind ring if every overring of the Noetherian ring is integrally closed.[7]:198
Every overring of a Noetherian integral domain is a ring of fractions if the Noetherian integral domain is a Dedekind ring with a torsion class group.[7]:200
Coherent rings
Definitions
A coherent ring is a commutative ring with each finitely generated ideal finitely presented.[2]:373 Noetherian domains and Prüfer domains are coherent.[8]:137
A pair [math]\displaystyle{ (R,T) }[/math] indicates a integral domain extension of [math]\displaystyle{ T }[/math] over [math]\displaystyle{ R }[/math].[9]:331
Ring [math]\displaystyle{ S }[/math] is an intermediate domain for pair [math]\displaystyle{ (R,T) }[/math] if [math]\displaystyle{ R }[/math] is a subdomain of [math]\displaystyle{ S }[/math] and [math]\displaystyle{ S }[/math] is a subdomain of [math]\displaystyle{ T }[/math].[9]:331
Properties
A Noetherian ring's Krull dimension is 1 or less if every overring is coherent.[2]:373
For integral domain pair [math]\displaystyle{ (R,T) }[/math], [math]\displaystyle{ T }[/math] is an overring of [math]\displaystyle{ R }[/math] if each intermediate integral domain is integrally closed in [math]\displaystyle{ T }[/math].[9]:332[10]:175
The integral closure of [math]\displaystyle{ R }[/math] is a Prüfer domain if each proper overring of [math]\displaystyle{ R }[/math] is coherent.[8]:137
The overrings of Prüfer domains and Krull 1-dimensional Noetherian domains are coherent.[8]:138
Prüfer domains
Properties
A ring has QR property if every overring is a localization with a multiplicative set.[11]:196 The QR domains are Prüfer domains.[11]:196 A Prüfer domain with a torsion Picard group is a QR domain.[11]:196 A Prüfer domain is a QR domain if the radical of every finitely generated ideal equals the radical generated by a principal ideal.[12]:500
The statement [math]\displaystyle{ R }[/math] is a Prüfer domain is equivalent to:[13]:56
- Each overring of [math]\displaystyle{ R }[/math] is the intersection of localizations of [math]\displaystyle{ R }[/math], and [math]\displaystyle{ R }[/math] is integrally closed.
- Each overring of [math]\displaystyle{ R }[/math] is the intersection of rings of fractions of [math]\displaystyle{ R }[/math], and [math]\displaystyle{ R }[/math] is integrally closed.
- Each overring of [math]\displaystyle{ R }[/math] has prime ideals that are extensions of the prime ideals of [math]\displaystyle{ R }[/math], and [math]\displaystyle{ R }[/math] is integrally closed.
- Each overring of [math]\displaystyle{ R }[/math] has at most 1 prime ideal lying over any prime ideal of [math]\displaystyle{ R }[/math], and [math]\displaystyle{ R }[/math] is integrally closed
- Each overring of [math]\displaystyle{ R }[/math] is integrally closed.
- Each overring of [math]\displaystyle{ R }[/math] is coherent.
The statement [math]\displaystyle{ R }[/math] is a Prüfer domain is equivalent to:[1]:167
- Each overring [math]\displaystyle{ S }[/math] of [math]\displaystyle{ R }[/math] is flat as a [math]\displaystyle{ \operatorname{S-} }[/math]module.
- Each valuation overring of [math]\displaystyle{ R }[/math] is a ring of fractions.
Minimal overring
Definitions
A minimal ring homomorphism [math]\displaystyle{ f }[/math] is an injective non-surjective homomorophism, and if the homomorphism [math]\displaystyle{ f }[/math] is a composition of homomorphisms [math]\displaystyle{ g }[/math] and [math]\displaystyle{ h }[/math] then [math]\displaystyle{ g }[/math] or [math]\displaystyle{ h }[/math] is an isomorphism.[14]:461
A proper minimal ring extension [math]\displaystyle{ T }[/math] of subring [math]\displaystyle{ R }[/math] occurs if the ring inclusion of [math]\displaystyle{ R }[/math] in to [math]\displaystyle{ T }[/math] is a minimal ring homomorphism. This implies the ring pair [math]\displaystyle{ (R,T) }[/math] has no proper intermediate ring.[15]:186
A minimal overring [math]\displaystyle{ T }[/math] of ring [math]\displaystyle{ R }[/math] occurs if [math]\displaystyle{ T }[/math] contains [math]\displaystyle{ R }[/math] as a subring, and the ring pair [math]\displaystyle{ (R,T) }[/math] has no proper intermediate ring.[16]:60
The Kaplansky ideal transform (Hayes transform, S-transform) of ideal [math]\displaystyle{ I }[/math] with respect to integral domain [math]\displaystyle{ R }[/math] is a subset of the fraction field [math]\displaystyle{ Q(R) }[/math]. This subset contains elements [math]\displaystyle{ x }[/math] such that for each element [math]\displaystyle{ y }[/math] of the ideal [math]\displaystyle{ I }[/math] there is a positive integer [math]\displaystyle{ n }[/math] with the product [math]\displaystyle{ x \cdot y^{n} }[/math] contained in integral domain [math]\displaystyle{ R }[/math].[17][16]:60
Properties
Any domain generated from a minimal ring extension of domain [math]\displaystyle{ R }[/math] is an overring of [math]\displaystyle{ R }[/math] if [math]\displaystyle{ R }[/math] is not a field.[17][15]:186
The field of fractions of [math]\displaystyle{ R }[/math] contains minimal overring [math]\displaystyle{ T }[/math] of [math]\displaystyle{ R }[/math] when [math]\displaystyle{ R }[/math] is not a field.[16]:60
Assume an integrally closed integral domain [math]\displaystyle{ R }[/math] is not a field, If a minimal overring of integral domain [math]\displaystyle{ R }[/math] exists, this minimal overring occurs as the Kaplansky transform of a maximal ideal of [math]\displaystyle{ R }[/math].[16]:60
Examples
The Bézout integral domain is a type of Prüfer domain; the Bézout domain's defining property is every finitely generated ideal is a principal ideal. The Bézout domain will share all the overring properties of a Prüfer domain.[1]:168
The integer ring is a Prüfer ring, and all overrings are rings of quotients.[7]:196 The dyadic rational is a fraction with an integer numerator and power of 2 denominators. The dyadic rational ring is the localization of the integers by powers of two and an overring of the integer ring.
See also
- Category of rings – Mathematical category whose objects are rings
- Coherent ring – Algebraic structure
- Dedekind domain – Ring with unique factorization for ideals (mathematics)
- Glossary of ring theory
- Integral element
- Krull dimension – In mathematics, dimension of a ring
- Local ring – (Mathematical) ring with a unique maximal ideal
- Localization (commutative algebra)
- Nilpotent – Element in a ring whose some power is 0
- Picard group – Mathematical group occurring in algebraic geometry and the theory of complex manifolds
- Principal ideal – Ring ideal generated by a single element of the ring
- Prüfer domain
- Noetherian ring – Mathematical ring with well-behaved ideals
- Regular element (in ring theory):
- Von Neumann regular ring – Rings admitting weak inverses
- Zero divisor – Ring element that can be multiplied by a non-zero element to equal 0
- Subring – Subset of a ring that forms a ring itself
- Total ring of fractions
- Valuation ring – Concept in algebra
Notes
- ↑ 1.0 1.1 1.2 Fontana & Papick 2002.
- ↑ 2.0 2.1 2.2 Papick 1978.
- ↑ 3.0 3.1 3.2 Zariski & Samuel 1965.
- ↑ 4.00 4.01 4.02 4.03 4.04 4.05 4.06 4.07 4.08 4.09 4.10 Davis 1962.
- ↑ Cohen 1950.
- ↑ Lane & Schilling 1939.
- ↑ 7.0 7.1 7.2 Davis 1964.
- ↑ 8.0 8.1 8.2 Papick 1980.
- ↑ 9.0 9.1 9.2 Papick 1979.
- ↑ Davis 1973.
- ↑ 11.0 11.1 11.2 Fuchs, Heinzer & Olberding 2004.
- ↑ Pendleton 1966.
- ↑ Bazzoni & Glaz 2006.
- ↑ Ferrand & Olivier 1970.
- ↑ 15.0 15.1 Dobbs & Shapiro 2006.
- ↑ 16.0 16.1 16.2 16.3 Dobbs & Shapiro 2007.
- ↑ 17.0 17.1 Sato, Sugatani & Yoshida 1992.
References
- Atiyah, Michael Francis; Macdonald, Ian G. (1969). Introduction to commutative algebra. Reading, Mass.: Addison-Wesley Publishing Company. ISBN 9780201407518. https://archive.org/details/introductiontoco0000atiy.
- Bazzoni, Silvana; Glaz, Sarah (2006). "Prüfer rings". in Brewer rings, James W.; Glaz, Sarah; Heinzer, William J. et al.. Multiplicative ideal theory in commutative algebra: a tribute to the work of Robert Gilmer. New York, NY: Springer. pp. 54–72. doi:10.1007/978-0-387-36717-0. ISBN 978-0-387-24600-0. https://link.springer.com/book/10.1007/978-0-387-36717-0.
- Cohen, Irving S. (1950). "Commutative rings with restricted minimum condition". Duke Mathematical Journal 17 (1): 27–42. doi:10.1215/S0012-7094-50-01704-2. https://projecteuclid.org/journals/duke-mathematical-journal/volume-17/issue-1/Commutative-rings-with-restricted-minimum-condition/10.1215/S0012-7094-50-01704-2.short.
- Davis, Edward D (1962). "Overrings of commutative rings. I. Noetherian overrings". Transactions of the American Mathematical Society 104 (1): 52–61. https://community.ams.org/journals/tran/1962-104-01/S0002-9947-1962-0139629-8/S0002-9947-1962-0139629-8.pdf.
- Davis, Edward D (1964). "Overrings of commutative rings. II. Integrally closed overrings.". Transactions of the American Mathematical Society 110 (2): 196–212. doi:10.1090/S0002-9947-1964-0156868-2. https://www.ams.org/journals/tran/1964-110-02/S0002-9947-1964-0156868-2/S0002-9947-1964-0156868-2.pdf.
- Davis, Edward D. (1973). "Overrings of commutative rings. III. Normal pairs". Transactions of the American Mathematical Society: 175–185. https://www.ams.org/journals/tran/1973-182-00/S0002-9947-1973-0325599-3/S0002-9947-1973-0325599-3.pdf.
- Dobbs, David E.; Shapiro, Jay (2006). "A classification of the minimal ring extensions of an integral domain". Journal of Algebra 305 (1): 185–193. doi:10.1016/j.jalgebra.2005.10.005.
- Dobbs, David E.; Shapiro, Jay (2007). "Descent of minimal overrings of integrally closed domains to fixed rings.". Houston Journal of Mathematics 33 (1). https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6100a294cbfc42a1d1b17eed4f6e9eb410b1cfd6.
- Ferrand, Daniel; Olivier, Jean-Pierre (1970). "Homomorphismes minimaux d'anneaux". Journal of Algebra 16 (3): 461–471. doi:10.1016/0021-8693(70)90020-7. https://core.ac.uk/download/pdf/82517943.pdf.
- Fontana, Marco; Papick, Ira J. (2002), "Dedekind and Prüfer domains", in Mikhalev, Alexander V.; Pilz, Günter F., The concise handbook of algebra, Kluwer Academic Publishers, Dordrecht, pp. 165–168, ISBN 9780792370727, https://books.google.com/books?id=i2g2cstPDfEC&pg=PA165
- Fuchs, Laszlo; Heinzer, William; Olberding, Bruce (2004), "Maximal prime divisors in arithmetical rings", Rings, modules, algebras, and abelian groups, Lecture Notes in Pure and Appl. Math., 236, Dekker, New York, pp. 189–203, https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=31102aa92596da205a3055559e5d971bca6d230a
- Lane, Saunders Mac; Schilling, O. F. G. (1939). "Infinite number fields with Noether ideal theories". American Journal of Mathematics 61 (3): 771–782. doi:10.2307/2371335. https://www.jstor.org/stable/2371335.
- Papick, Ira J. (1978). "A Remark on Coherent Overrings". Canadian Mathematical Bulletin 21 (3): 373–375. doi:10.4153/CMB-1978-067-4.
- Papick, Ira J. (1979). "Coherent overrings". Canadian Mathematical Bulletin 22 (3): 331–337. doi:10.4153/CMB-1979-041-3.
- Papick, Ira J. (1980). "A note on proper overrings". Rikkyo Daigaku Sugaku Zasshi 28 (2): 137–140. doi:10.14992/00010253.
- Pendleton, Robert L. (1966). "A characterization of Q-domains". Bulletin of the American Mathematical Society 72 (4): 499–500. doi:10.1090/S0002-9904-1966-11514-8. https://projecteuclid.org/journals/bulletin-of-the-american-mathematical-society-new-series/volume-72/issue-3/A-characterization-of-Q-domains/bams/1183527956.full.
- Sato, Junro; Sugatani, Takasi; Yoshida, Ken-ichi (January 1992). "On minimal overrings of a noetherian domain". Communications in Algebra 20 (6): 1735–1746. doi:10.1080/00927879208824427. https://www.tandfonline.com/doi/abs/10.1080/00927879208824427?journalCode=lagb20.
- Zariski, Oscar; Samuel, Pierre (1965). Commutative algebra. New York: Springer-Verlag. ISBN 978-0-387-90089-6. https://link.springer.com/book/9780387900896.
Related categories
Original source: https://en.wikipedia.org/wiki/Overring.
Read more |