Physics:Abraham–Minkowski controversy

From HandWiki
Short description: In physics: electromagnetic momentum within dielectric media

The Abraham–Minkowski controversy is a physics debate concerning electromagnetic momentum within dielectric media.[1][2] Two equations were first suggested by Hermann Minkowski (1908)[3] and Max Abraham (1909)[4][5] for this momentum. They predict different values, from which the name of the controversy derives.[6] Experimental support has been claimed for both.[7][8][9][10]

The two points of view have different physical interpretations and thus neither need be more correct than the other.[11] David J. Griffiths argues that, in the presence of matter, only the total stress–energy tensor carries unambiguous physical significance; how one apportions it between an "electromagnetic" part and a "matter" part depends on context and convenience.[12]

Several papers have claimed to have resolved this controversy.[13][14][15][16][17][18]

The controversy is still of importance in physics beyond the Standard Model where electrodynamics gets modifications, like in the presence of axions.[19]

References

  1. Leonhardt, Ulf (2006). "Momentum in an uncertain light". Nature 444 (7121): 823–824. doi:10.1038/444823a. PMID 17167461. Bibcode2006Natur.444..823L. 
  2. McDonald, K. T. (2017). "Bibliography on the Abraham–Minkowski Debate". http://physics.princeton.edu/~mcdonald/examples/ambib.pdf. 
  3. Minkowski, H. (1908). "Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern". Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse: 53–111. 
  4. Abraham, M. (1909). "Zur Elektrodynamik bewegter Körper". Rendiconti del Circolo Matematico di Palermo 28: 1–28. doi:10.1007/bf03018208. 
    • Wikisource translation: On the Electrodynamics of Moving Bodies
  5. Abraham, M. (1910). "Sull'Elletrodinamica di Minkowski". Rendiconti del Circolo Matematico di Palermo 30: 33–46. doi:10.1007/bf03014862. https://zenodo.org/record/1428452. 
    • Wikisource translation: On the Electrodynamics of Minkowski
  6. Pfeifer, R. N. C.; Nieminen, T. A; Heckenberg, N. R.; Rubinsztein-Dunlop, H. (2007). "Colloquium: Momentum of an electromagnetic wave in dielectric media". Reviews of Modern Physics 79 (4): 1197–1216. doi:10.1103/RevModPhys.79.1197. Bibcode2007RvMP...79.1197P.  See also: Pfeifer, Robert N. C.; Nieminen, Timo A.; Heckenberg, Norman R.; Rubinsztein-Dunlop, Halina (2009). "Erratum: Colloquium: Momentum of an electromagnetic wave in dielectric media [Rev. Mod. Phys. 79, 1197 (2007)]". Reviews of Modern Physics 81 (1): 443. doi:10.1103/RevModPhys.81.443. Bibcode2009RvMP...81..443P. 
  7. A. Ashkin; J. M. Dziedzic (1973). "Radiation Pressure on a Free Liquid Surface". Physical Review Letters 30 (4): 139–142. doi:10.1103/PhysRevLett.30.139. 
  8. Gretchen K. Campbell; Aaron E. Leanhardt; Jongchul Mun; Micah Boyd; Erik W. Streed; Wolfgang Ketterle; David E. Pritchard (2005). "Photon Recoil Momentum in Dispersive Media". Physical Review Letters 94 (17): 170403. doi:10.1103/PhysRevLett.94.170403. PMID 15904272. 
  9. Weilong She; Jianhui Yu; Raohui Feng (2008). "Observation of a Push Force on the End Face of a Nanometer Silica Filament Exerted by Outgoing Light". Physical Review Letters 101 (24): 243601. doi:10.1103/PhysRevLett.101.243601. PMID 19113619. 
  10. Dacey, J. (9 January 2009). "Experiment resolves century-old optics mystery". Physics World. https://physicsworld.com/a/experiment-resolves-century-old-optics-mystery/. 
  11. Milonni, Peter W.; Boyd, Robert W. (2010-12-31). "Momentum of Light in a Dielectric Medium" (in en). Advances in Optics and Photonics 2 (4): 519. doi:10.1364/AOP.2.000519. ISSN 1943-8206. http://www.hajim.rochester.edu/optics/sites/boyd/assets/pdf/publications/Milonni_AOP_10.pdf. Retrieved 2023-07-19. 
  12. Griffiths, D. J. (2012). "Resource Letter EM-1: Electromagnetic Momentum". American Journal of Physics 80 (1): 7–18. doi:10.1119/1.3641979. Bibcode2012AmJPh..80....7G. 
  13. Gordon, J. P. (1973). "Radiation forces and momenta in dielectric media". Physical Review A 8 (1): 14–21. doi:10.1103/physreva.8.14. Bibcode1973PhRvA...8...14G. 
  14. Nelson, D. F. (1991). "Momentum, pseudomomentum, and wave momentum: Toward resolving the Minkowski–Abraham controversy". Physical Review A 44 (6): 3985–3996. doi:10.1103/physreva.44.3985. PMID 9906414. Bibcode1991PhRvA..44.3985N. 
  15. Mansuripur, M. (2010). "Resolution of the Abraham–Minkowski controversy". Optics Communications 283 (10): 1997–2005. doi:10.1016/j.optcom.2010.01.010. Bibcode2010OptCo.283.1997M. 
  16. Barnett, S. (2010). "Resolution of the Abraham–Minkowski Dilemma". Physical Review Letters 104 (7): 070401. doi:10.1103/PhysRevLett.104.070401. PMID 20366861. Bibcode2010PhRvL.104g0401B. https://strathprints.strath.ac.uk/26871/5/AbMinPRL.pdf. 
  17. Mikko Partanen; Teppo Häyrynen; Jani Oksanen; Jukka Tulkki (2017). "Photon mass drag and the momentum of light in a medium". Physical Review A 95 (6): 063850. doi:10.1103/PhysRevA.95.063850. Bibcode2017PhRvA..95f3850P. 
  18. Mikko Partanen; Jukka Tulkki (2021). "Covariant theory of light in a dispersive medium". Physical Review A 104 (2): 023510. doi:10.1103/PhysRevA.104.023510. Bibcode2021PhRvA.104b3510P. 
  19. Tobar, Michael E.; McAllister, Ben T.; Goryachev, Maxim (2022-02-15). "Poynting vector controversy in axion modified electrodynamics" (in en). Physical Review D 105 (4): 045009. doi:10.1103/PhysRevD.105.045009. ISSN 2470-0010. https://link.aps.org/doi/10.1103/PhysRevD.105.045009. 

External links