Physics:Abraham–Minkowski controversy

From HandWiki
Short description: In physics: electromagnetic momentum within dielectric media

The Abraham–Minkowski controversy is a physics debate concerning electromagnetic momentum within dielectric media.[1][2] Two equations were first suggested by Hermann Minkowski (1908)[3] and Max Abraham (1909)[4][5] for this momentum. They predict different values, from which the name of the controversy derives.[6] Experimental support has been claimed for both.[7][8][9][10]

The two points of view have different physical interpretations and thus neither need be more correct than the other.[11] David J. Griffiths argues that, in the presence of matter, only the total stress–energy tensor carries unambiguous physical significance; how one apportions it between an "electromagnetic" part and a "matter" part depends on context and convenience.[12]

Several papers have claimed to have resolved this controversy.[13][14][15][16][17][18]

The controversy is still of importance in physics beyond the Standard Model where electrodynamics gets modifications, like in the presence of axions.[19]


  1. Leonhardt, Ulf (2006). "Momentum in an uncertain light". Nature 444 (7121): 823–824. doi:10.1038/444823a. PMID 17167461. Bibcode2006Natur.444..823L. 
  2. McDonald, K. T. (2017). "Bibliography on the Abraham–Minkowski Debate". 
  3. Minkowski, H. (1908). "Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern". Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse: 53–111. 
  4. Abraham, M. (1909). "Zur Elektrodynamik bewegter Körper". Rendiconti del Circolo Matematico di Palermo 28: 1–28. doi:10.1007/bf03018208. 
    • Wikisource translation: On the Electrodynamics of Moving Bodies
  5. Abraham, M. (1910). "Sull'Elletrodinamica di Minkowski". Rendiconti del Circolo Matematico di Palermo 30: 33–46. doi:10.1007/bf03014862. 
    • Wikisource translation: On the Electrodynamics of Minkowski
  6. Pfeifer, R. N. C.; Nieminen, T. A; Heckenberg, N. R.; Rubinsztein-Dunlop, H. (2007). "Colloquium: Momentum of an electromagnetic wave in dielectric media". Reviews of Modern Physics 79 (4): 1197–1216. doi:10.1103/RevModPhys.79.1197. Bibcode2007RvMP...79.1197P.  See also: Pfeifer, Robert N. C.; Nieminen, Timo A.; Heckenberg, Norman R.; Rubinsztein-Dunlop, Halina (2009). "Erratum: Colloquium: Momentum of an electromagnetic wave in dielectric media [Rev. Mod. Phys. 79, 1197 (2007)]". Reviews of Modern Physics 81 (1): 443. doi:10.1103/RevModPhys.81.443. Bibcode2009RvMP...81..443P. 
  7. A. Ashkin; J. M. Dziedzic (1973). "Radiation Pressure on a Free Liquid Surface". Physical Review Letters 30 (4): 139–142. doi:10.1103/PhysRevLett.30.139. 
  8. Gretchen K. Campbell; Aaron E. Leanhardt; Jongchul Mun; Micah Boyd; Erik W. Streed; Wolfgang Ketterle; David E. Pritchard (2005). "Photon Recoil Momentum in Dispersive Media". Physical Review Letters 94 (17): 170403. doi:10.1103/PhysRevLett.94.170403. PMID 15904272. 
  9. Weilong She; Jianhui Yu; Raohui Feng (2008). "Observation of a Push Force on the End Face of a Nanometer Silica Filament Exerted by Outgoing Light". Physical Review Letters 101 (24): 243601. doi:10.1103/PhysRevLett.101.243601. PMID 19113619. 
  10. Dacey, J. (9 January 2009). "Experiment resolves century-old optics mystery". Physics World. 
  11. Milonni, Peter W.; Boyd, Robert W. (2010-12-31). "Momentum of Light in a Dielectric Medium" (in en). Advances in Optics and Photonics 2 (4): 519. doi:10.1364/AOP.2.000519. ISSN 1943-8206. Retrieved 2023-07-19. 
  12. Griffiths, D. J. (2012). "Resource Letter EM-1: Electromagnetic Momentum". American Journal of Physics 80 (1): 7–18. doi:10.1119/1.3641979. Bibcode2012AmJPh..80....7G. 
  13. Gordon, J. P. (1973). "Radiation forces and momenta in dielectric media". Physical Review A 8 (1): 14–21. doi:10.1103/physreva.8.14. Bibcode1973PhRvA...8...14G. 
  14. Nelson, D. F. (1991). "Momentum, pseudomomentum, and wave momentum: Toward resolving the Minkowski–Abraham controversy". Physical Review A 44 (6): 3985–3996. doi:10.1103/physreva.44.3985. PMID 9906414. Bibcode1991PhRvA..44.3985N. 
  15. Mansuripur, M. (2010). "Resolution of the Abraham–Minkowski controversy". Optics Communications 283 (10): 1997–2005. doi:10.1016/j.optcom.2010.01.010. Bibcode2010OptCo.283.1997M. 
  16. Barnett, S. (2010). "Resolution of the Abraham–Minkowski Dilemma". Physical Review Letters 104 (7): 070401. doi:10.1103/PhysRevLett.104.070401. PMID 20366861. Bibcode2010PhRvL.104g0401B. 
  17. Mikko Partanen; Teppo Häyrynen; Jani Oksanen; Jukka Tulkki (2017). "Photon mass drag and the momentum of light in a medium". Physical Review A 95 (6): 063850. doi:10.1103/PhysRevA.95.063850. Bibcode2017PhRvA..95f3850P. 
  18. Mikko Partanen; Jukka Tulkki (2021). "Covariant theory of light in a dispersive medium". Physical Review A 104 (2): 023510. doi:10.1103/PhysRevA.104.023510. Bibcode2021PhRvA.104b3510P. 
  19. Tobar, Michael E.; McAllister, Ben T.; Goryachev, Maxim (2022-02-15). "Poynting vector controversy in axion modified electrodynamics" (in en). Physical Review D 105 (4): 045009. doi:10.1103/PhysRevD.105.045009. ISSN 2470-0010. 

External links