Physics:Coating

From HandWiki
Short description: Substance spread over a surface

A coating is a covering that is applied to the surface of an object, usually referred to as the substrate.[1][2] The purpose of applying the coating may be decorative, functional, or both.[3] Coatings may be applied as liquids, gases or solids e.g. Powder coatings.

Paints and lacquers are coatings that mostly have dual uses, which are protecting the substrate and being decorative, although some artists paints are only for decoration, and the paint on large industrial pipes is for preventing corrosion and identification e.g. blue for process water, red for fire-fighting control. Functional coatings may be applied to change the surface properties of the substrate, such as adhesion, wettability, corrosion resistance, or wear resistance.[4] In other cases, e.g. semiconductor device fabrication (where the substrate is a wafer), the coating adds a completely new property, such as a magnetic response or electrical conductivity, and forms an essential part of the finished product.[5][6]

A major consideration for most coating processes is that the coating is to be applied at a controlled thickness, and a number of different processes are in use to achieve this control, ranging from a simple brush for painting a wall, to some very expensive machinery applying coatings in the electronics industry. A further consideration for 'non-all-over' coatings is that control is needed as to where the coating is to be applied. A number of these non-all-over coating processes are printing processes. Many industrial coating processes involve the application of a thin film of functional material to a substrate, such as paper, fabric, film, foil, or sheet stock. If the substrate starts and ends the process wound up in a roll, the process may be termed "roll-to-roll" or "web-based" coating.[7] A roll of substrate, when wound through the coating machine, is typically called a web.

Applications

Coating applications are diverse and serve many purposes.[4][8] Coatings can be both decorative and have other functions. A pipe carrying water for a fire suppression system can be coated with a red (for identification) anticorrosion paint. Most coatings to some extent protect the substrate, such as maintenance coatings for metals and concrete.[9] A decorative coating can offer a particular reflective property, such as high gloss, satin, or a flat or matte appearance.[10]

A major coating application is to protect metal from corrosion.[11] This use includes preserving machinery, equipment, and structures.[12][13][14][15][16] Most automobiles are made of metal. The body and underbody are typically coated with underbody coating.[17] Anticorrosion coatings may use graphene in combination with water-based epoxies.[18]

Coatings are used to seal the surface of concrete, such as seamless polymer/resin flooring,[19][20][21][22][23] bund wall/containment lining, waterproofing and damp proofing concrete walls, and bridge decks.[24][25][26][27]

Roof coatings are designed primarily for waterproofing and sun reflection to reduce heating. They tend to be elastomeric to allow for movement of the roof without cracking the coating membrane.[28][29][30]

The coating, sealing, and waterproofing of wood have been going on since biblical times, with God commanding Noah to build an ark and then coat it. Wood has been a key material in construction since ancient times, so its preservation by coating has received much attention.[31] Efforts to improve the performance of wood coatings continue.[32][33][34][35][36]

Automotive coatings are used to enhance the appearance and durability of vehicles. These coatings include primers, basecoats, and clearcoats, and they are applied using various techniques, including electrostatic and spray gun applications.[37]

Coatings are used to alter tribological properties and wear characteristics.[38][39] Other functions of coatings include:

  • Anti-fouling coatings[40][41][42]
  • Anti-Friction, Wear and Scuffing Resistance Coatings for Rolling-element bearings[43]
  • Anti-microbial coatings.[44]
  • Anti-reflective coatings for example on spectacles.[45]
  • Coatings that alter or have magnetic, electrical or electronic properties.[46][47][48]
  • Flame retardant coatings.[49][50][51] Flame-retardant materials and coatings are being developed that are phosphorus and bio-based.[52] These include coatings with intumescent functionality.[53]
  • Non-stick PTFE coated cooking pots/pans.[54]
  • Optical coatings are available that alter optical properties of a material or object.[55]
  • UV coatings[56]

Analysis and characterization

Numerous destructive and non-destructive evaluation (NDE) methods exist for characterizing coatings.[57][58][59][60] The most common destructive method is microscopy of a mounted cross-section of the coating and its substrate.[61][62][63] The most common non-destructive techniques include ultrasonic thickness measurement, X-ray fluorescence (XRF),[64] X-Ray diffraction (XRD)[65] and micro hardness indentation.[66] X-ray photoelectron spectroscopy (XPS) is also a classical characterization method to investigate the chemical composition of the nanometer thick surface layer of a material.[67] Scanning electron microscopy coupled with energy dispersive X-ray spectrometry (SEM-EDX, or SEM-EDS) allows to visualize the surface texture and to probe its elementary chemical composition.[68] Other characterization methods include transmission electron microscopy (TEM), atomic force microscopy (AFM), scanning tunneling microscope (STM), and Rutherford backscattering spectrometry (RBS). Various methods of Chromatography are also used,[69] as well as thermogravimetric analysis.[70]

Formulation

The formulation of a coating depends primarily on the function required of the coating and also on aesthetics required such as color and gloss.[71] The four primary ingredients are the resin (or binder), solvent which maybe water (or solventless), pigment(s) and additives.[72][73] Research is ongoing to remove heavy metals from coating formulations completely.[74]

Processes

Coating processes may be classified as follows:

Vapor deposition

Chemical vapor deposition

Main page: Chemistry:Chemical vapor deposition
  • Metalorganic vapour phase epitaxy
  • Electrostatic spray assisted vapour deposition (ESAVD)
  • Sherardizing
  • Some forms of Epitaxy
    • Molecular beam epitaxy

Physical vapor deposition

Main page: Physics:Physical vapor deposition

Chemical and electrochemical techniques

Spraying

Roll-to-roll coating processes

Common roll-to-roll coating processes include:

  • Air knife coating
  • Anilox coater
  • Flexo coater
  • Gap Coating
    • Knife-over-roll coating
  • Gravure coating
  • Hot melt coating- when the necessary coating viscosity is achieved by temperature rather than solution of the polymers etc. This method commonly implies slot-die coating above room temperature, but it also is possible to have hot-melt roller coating; hot-melt metering-rod coating, etc.
  • Immersion dip coating
  • Kiss coating
  • Metering rod (Meyer bar) coating
  • Roller coating
  • Silk Screen coater
    • Rotary screen
  • Slot Die coating - Slot die coating was originally developed in the 1950s.[76] Slot die coating has a low operational cost and is an easily scaled processing technique for depositing thin and uniform films rapidly, while minimizing material waste.[77] Slot die coating technology is used to deposit a variety of liquid chemistries onto substrates of various materials such as glass, metal, and polymers by precisely metering the process fluid and dispensing it at a controlled rate while the coating die is precisely moved relative to the substrate.[78] The complex inner geometry of conventional slot dies require machining or can be accomplished with 3-D printing.[79]
  • Extrusion coating - generally high pressure, often high temperature, and with the web travelling much faster than the speed of the extruded polymer
    • Curtain coating- low viscosity, with the slot vertically above the web and a gap between slot-die and web.
    • Slide coating- bead coating with an angled slide between the slot-die and the bead. Commonly used for multilayer coating in the photographic industry.
    • Slot die bead coating- typically with the web backed by a roller and a very small gap between slot-die and web.
    • Tensioned-web slot-die coating- with no backing for the web.
  • Inkjet printing
  • Lithography
  • Flexography

Physical

See also


References

  1. Saberi, A.; Bakhsheshi-Rad, H.R.; Abazari, S.; Ismail, A.F.; Sharif, S.; Ramakrishna, S.; Daroonparvar, M.; Berto, F. A Comprehensive Review on Surface Modifications of Biodegradable Magnesium-Based Implant Alloy: Polymer Coatings Opportunities and Challenges. Coatings 2021, 11, 747. https://doi.org/10.3390/coatings11070747
  2. Carroll, Gregory T.; Turro, Nicholas J.; Mammana, Angela; Koberstein, Jeffrey T. (2017). "Photochemical Immobilization of Polymers on a Surface: Controlling Film Thickness and Wettability" (in en). Photochemistry and Photobiology 93 (5): 1165–1169. doi:10.1111/php.12751. ISSN 0031-8655. PMID 28295380. https://onlinelibrary.wiley.com/doi/10.1111/php.12751. 
  3. Howarth, G A; Manock, H L (July 1997). "Water-borne polyurethane dispersions and their use in functional coatings". Surface Coatings International 80 (7): 324–328. doi:10.1007/bf02692680. ISSN 1356-0751. 
  4. 4.0 4.1 Howarth G.A "Synthesis of a legislation compliant corrosion protection coating system based on urethane, oxazolidine and waterborne epoxy technology" Master of Science Thesis April 1997 Imperial College London
  5. Wu, Kunjie; Li, Hongwei; Li, Liqiang; Zhang, Suna; Chen, Xiaosong; Xu, Zeyang; Zhang, Xi; Hu, Wenping et al. (2016-06-28). "Controlled Growth of Ultrathin Film of Organic Semiconductors by Balancing the Competitive Processes in Dip-Coating for Organic Transistors" (in en). Langmuir 32 (25): 6246–6254. doi:10.1021/acs.langmuir.6b01083. ISSN 0743-7463. PMID 27267545. https://pubs.acs.org/doi/10.1021/acs.langmuir.6b01083. 
  6. Campoy-Quiles, M.; Schmidt, M.; Nassyrov, D.; Peña, O.; Goñi, A. R.; Alonso, M. I.; Garriga, M. (2011-02-28). "Real-time studies during coating and post-deposition annealing in organic semiconductors" (in en). Thin Solid Films. 5th International Conference on Spectroscopic Ellipsometry (ICSE-V) 519 (9): 2678–2681. doi:10.1016/j.tsf.2010.12.228. ISSN 0040-6090. Bibcode2011TSF...519.2678C. https://www.sciencedirect.com/science/article/pii/S0040609011000927. 
  7. Granqvist, Claes G.; Bayrak Pehlivan, İlknur; Niklasson, Gunnar A. (2018-02-25). "Electrochromics on a roll: Web-coating and lamination for smart windows" (in en). Surface and Coatings Technology. Society of Vacuum Coaters Annual Technical Conference 2017 336: 133–138. doi:10.1016/j.surfcoat.2017.08.006. ISSN 0257-8972. https://www.sciencedirect.com/science/article/pii/S0257897217307843. 
  8. Howarth, G A; Manock, H L (July 1997). "Water-borne polyurethane dispersions and their use in functional coatings". Surface Coatings International 80 (7): 324–328. doi:10.1007/bf02692680. ISSN 1356-0751. 
  9. Howarth, G.A (1995). "5". in Karsa, D.R. Waterborne Maintenance Systems for Concrete and Metal Structures. 165. Cambridge, U.K: The Royal Society of Chemistry. ISBN 0-85404-740-9. 
  10. Akram, Waseem; Farhan Rafique, Amer; Maqsood, Nabeel; Khan, Afzal; Badshah, Saeed; Khan, Rafi Ullah (2020-01-14). "Characterization of PTFE Film on 316L Stainless Steel Deposited through Spin Coating and Its Anticorrosion Performance in Multi Acidic Mediums" (in en). Materials 13 (2): 388. doi:10.3390/ma13020388. ISSN 1996-1944. PMID 31947700. Bibcode2020Mate...13..388A. 
  11. Li, Jiao; Bai, Huanhuan; Feng, Zhiyuan (January 2023). "Advances in the Modification of Silane-Based Sol-Gel Coating to Improve the Corrosion Resistance of Magnesium Alloys" (in en). Molecules 28 (6): 2563. doi:10.3390/molecules28062563. ISSN 1420-3049. PMID 36985537. 
  12. S. Grainger and J. Blunt, Engineering Coatings: Design and Application, Woodhead Publishing Ltd, UK, 2nd ed., 1998, ISBN:978-1-85573-369-5
  13. Ramakrishnan, T.; Raja Karthikeyan, K.; Tamilselvan, V.; Sivakumar, S.; Gangodkar, Durgaprasad; Radha, H. R.; Narain Singh, Anoop; Asrat Waji, Yosef (2022-01-13). "Study of Various Epoxy-Based Surface Coating Techniques for Anticorrosion Properties" (in en). Advances in Materials Science and Engineering 2022: e5285919. doi:10.1155/2022/5285919. ISSN 1687-8434. 
  14. Mutyala, Kalyan C.; Ghanbari, E.; Doll, G.L. (August 2017). "Effect of deposition method on tribological performance and corrosion resistance characteristics of Cr x N coatings deposited by physical vapor deposition". Thin Solid Films 636: 232–239. doi:10.1016/j.tsf.2017.06.013. ISSN 0040-6090. Bibcode2017TSF...636..232M. 
  15. Gite, Vikas V., et al. "Microencapsulation of quinoline as a corrosion inhibitor in polyurea microcapsules for application in anticorrosive PU coatings." Progress in Organic Coatings 83 (2015): 11-18.
  16. Gao, Mei-lian; Wu, Xiao-bo; Gao, Ping-ping; Lei, Ting; Liu, Chun-xuan; Xie, Zhi-yong (2019-11-01). "Properties of hydrophobic carbon–PTFE composite coating with high corrosion resistance by facile preparation on pure Ti" (in en). Transactions of Nonferrous Metals Society of China 29 (11): 2321–2330. doi:10.1016/S1003-6326(19)65138-1. ISSN 1003-6326. https://www.sciencedirect.com/science/article/pii/S1003632619651381. 
  17. "Applying underbody sealant" (in en). https://www.howacarworks.com/bodywork/applying-underbody-sealant. 
  18. Monetta, T.; Acquesta, A.; Carangelo, A.; Bellucci, F. (2018-09-01). "Considering the effect of graphene loading in water-based epoxy coatings" (in en). Journal of Coatings Technology and Research 15 (5): 923–931. doi:10.1007/s11998-018-0045-8. ISSN 1935-3804. https://doi.org/10.1007/s11998-018-0045-8. 
  19. "Polymer Flooring Systems For Industrial and Manufacturing Facilities" (in en-US). https://www.surfacesolutionsusa.com/flooring-solutions/polymer/. 
  20. "Arizona Polymer Flooring | Industrial Epoxy Floor Coatings". https://www.apfepoxy.com/. 
  21. , Elwin Aloysius Cornelius Adrianus DE; Ferry Ludovicus Thys & Richard Hendrikus Gerrit Brinkhuis et al."Floor coating compositions" patent WO2016166361A1, issued 2016-10-20
  22. Gelfant, Frederick (2015). "Polymeric Floor Coatings". Protective Organic Coatings. pp. 139–151. doi:10.31399/asm.hb.v05b.a0006037. ISBN 978-1-62708-172-6. https://dl.asminternational.org/handbooks/edited-volume/13/chapter-abstract/139655/Polymeric-Floor-Coatings?redirectedFrom=fulltext. Retrieved 2022-11-14. 
  23. Ateya, Taher & Balcı, Bekir & Bayraktar, Oğuzhan & Kaplan, Gökhan. (2019). Floor Coating Materials.
  24. O’Reilly, Matthew; Darwin, David; Browning, JoAnn; Locke, Carl E. (January 2011) (in en). Evaluation of Multiple Corrosion Protection Systems for Reinforced Concrete Bridge Decks. https://kuscholarworks.ku.edu/handle/1808/19840. 
  25. Weyers, Richard E.; Cady, Philip D. (1987-01-01). "Deterioration of Concrete Bridge Decks from Corrosion of Reinforcing Steel" (in English). Concrete International 9 (1). ISSN 0162-4075. https://www.concrete.org/publications/internationalconcreteabstractsportal/m/details/id/1959. 
  26. Grace, Nabil; Hanson, James; AbdelMessih, Hany (2004-10-01). "Inspection and Deterioration of Bridge Decks Constructed Using Stay-In-Place Metal Forms and Epoxy-Coated Reinforcement". Civil and Environmental Engineering. https://digitalcommons.calpoly.edu/cenv_fac/138. 
  27. Babaei, K; Hawkins, N.M (1987). EVALUATION OF BRIDGE DECK PROTECTIVE STRATEGIES. Washington DC: Transportation Research Board. ISBN 0-309-04566-5. http://onlinepubs.trb.org/Onlinepubs/nchrp/nchrp_rpt_297.pdf. 
  28. "History of Liquid Waterproofing". Liquid Roofing and Waterproofing Association. Archived from the original on 1 October 2011. https://web.archive.org/web/20111001231035/http://www.lrwa.org.uk/History-of-Liquid-Waterproofing. Retrieved 12 September 2011. 
  29. "Liquid-Applied Monolithic Membrane Systems". Roof Coatings Manufacturers Association. http://www.roofcoatings.org/product.html#coldapplied. Retrieved 12 September 2011. 
  30. "The benefits of liquid roofing". Why use liquid waterproofing. Liquid Roofing & Waterproofing Association. Archived from the original on 1 October 2011. https://web.archive.org/web/20111001231232/http://www.lrwa.org.uk/Why-use-Liquid-Waterproofing. Retrieved 12 September 2011. 
  31. Rowell, Roger M. (2021-07-31). "Understanding Wood Surface Chemistry and Approaches to Modification: A Review" (in en). Polymers 13 (15): 2558. doi:10.3390/polym13152558. ISSN 2073-4360. PMID 34372161. 
  32. , Xiaohong; Jianming Xu & Yawei Xu et al."Wood coating composition" patent WO2014190515A1, issued 2014-12-04
  33. Hazir, Ender; Koc, Kücük Huseyin; Hazir, Ender; Koc, Kücük Huseyin (December 2019). "Evaluation of wood surface coating performance using water based, solvent based and powder coating". Maderas. Ciencia y tecnología 21 (4): 467–480. doi:10.4067/S0718-221X2019005000404. ISSN 0718-221X. http://www.scielo.cl/scielo.php?script=sci_abstract&pid=S0718-221X2019000400467&lng=en&nrm=iso&tlng=en. 
  34. Désor, D.; Krieger, S.; Apitz, G.; Kuropka, R. (1999-10-01). "Water-borne acrylic dispersions for industrial wood coatings" (in en). Surface Coatings International 82 (10): 488–496. doi:10.1007/BF02692644. ISSN 1356-0751. https://doi.org/10.1007/BF02692644. 
  35. Podgorski, L.; Roux, M. (1999-12-01). "Wood modification to improve the durability of coatings" (in en). Surface Coatings International 82 (12): 590–596. doi:10.1007/BF02692672. ISSN 1356-0751. https://doi.org/10.1007/BF02692672. 
  36. Žigon, Jure; Kovač, Janez; Petrič, Marko (2022-01-01). "The influence of mechanical, physical and chemical pre-treatment processes of wood surface on the relationships of wood with a waterborne opaque coating" (in en). Progress in Organic Coatings 162: 106574. doi:10.1016/j.porgcoat.2021.106574. ISSN 0300-9440. 
  37. Jaiswal, Vishal. "Coating Process: Types, Applications, and Advantages" (in en). https://www.mechanicalsite.com/2023/05/coating-process.html. 
  38. Tafreshi, Mahshid; Allahkaram, Saeid Reza; Mahdavi, Soheil (2020-12-01). "Effect of PTFE on characteristics, corrosion, and tribological behavior of Zn–Ni electrodeposits". Surface Topography: Metrology and Properties 8 (4): 045013. doi:10.1088/2051-672X/ab9f05. ISSN 2051-672X. Bibcode2020SuTMP...8d5013T. https://iopscience.iop.org/article/10.1088/2051-672X/ab9f05. 
  39. Peng, Shiguang; Zhang, Lin; Xie, Guoxin; Guo, Yue; Si, Lina; Luo, Jianbin (2019-09-01). "Friction and wear behavior of PTFE coatings modified with poly (methyl methacrylate)" (in en). Composites Part B: Engineering 172: 316–322. doi:10.1016/j.compositesb.2019.04.047. ISSN 1359-8368. https://www.sciencedirect.com/science/article/pii/S1359836818337119. 
  40. Cassé, Franck; Swain, Geoffrey W. (2006-04-01). "The development of microfouling on four commercial antifouling coatings under static and dynamic immersion" (in en). International Biodeterioration & Biodegradation 57 (3): 179–185. doi:10.1016/j.ibiod.2006.02.008. ISSN 0964-8305. https://www.sciencedirect.com/science/article/pii/S0964830506000394. 
  41. Chambers, L.D.; Stokes, K.R.; Walsh, F.C.; Wood, R.J.K. (December 2006). "Modern approaches to marine antifouling coatings". Surface and Coatings Technology 201 (6): 3642–3652. doi:10.1016/j.surfcoat.2006.08.129. ISSN 0257-8972. https://doi.org/10.1016/j.surfcoat.2006.08.129. 
  42. Yebra, Diego Meseguer; Kiil, Søren; Dam-Johansen, Kim (2004-07-01). "Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings" (in en). Progress in Organic Coatings 50 (2): 75–104. doi:10.1016/j.porgcoat.2003.06.001. ISSN 0300-9440. https://www.sciencedirect.com/science/article/pii/S0300944003001644. 
  43. Mutyala, Kalyan C.; Singh, Harpal; Evans, R. D.; Doll, G. L. (23 June 2016). "Effect of Diamond-Like Carbon Coatings on Ball Bearing Performance in Normal, Oil-Starved, and Debris-Damaged Conditions". Tribology Transactions 59 (6): 1039–1047. doi:10.1080/10402004.2015.1131349. 
  44. Salwiczek, Mario; Qu, Yue; Gardiner, James; Strugnell, Richard A.; Lithgow, Trevor; McLean, Keith M.; Thissen, Helmut (2014-02-01). "Emerging rules for effective antimicrobial coatings" (in English). Trends in Biotechnology 32 (2): 82–90. doi:10.1016/j.tibtech.2013.09.008. ISSN 0167-7799. PMID 24176168. https://www.cell.com/trends/biotechnology/abstract/S0167-7799(13)00207-2. 
  45. Anshel, Jeffrey (2005). Visual ergonomics handbook. CRC Press. p. 56. ISBN 1-56670-682-3. 
  46. Constantinides, Steve (2022-01-01), Croat, John; Ormerod, John, eds., "Chapter 11 - Permanent magnet coatings and testing procedures" (in en), Modern Permanent Magnets, Woodhead Publishing Series in Electronic and Optical Materials (Woodhead Publishing): pp. 371–402, doi:10.1016/b978-0-323-88658-1.00011-x, ISBN 978-0-323-88658-1, https://www.sciencedirect.com/science/article/pii/B978032388658100011X, retrieved 2022-11-14 
  47. Biehl, Philip; Von der Lühe, Moritz; Dutz, Silvio; Schacher, Felix H. (January 2018). "Synthesis, Characterization, and Applications of Magnetic Nanoparticles Featuring Polyzwitterionic Coatings" (in en). Polymers 10 (1): 91. doi:10.3390/polym10010091. ISSN 2073-4360. PMID 30966126. 
  48. Abdolrahimi, Maryam; Vasilakaki, Marianna; Slimani, Sawssen; Ntallis, Nikolaos; Varvaro, Gaspare; Laureti, Sara; Meneghini, Carlo; Trohidou, Kalliopi N. et al. (July 2021). "Magnetism of Nanoparticles: Effect of the Organic Coating" (in en). Nanomaterials 11 (7): 1787. doi:10.3390/nano11071787. ISSN 2079-4991. PMID 34361173. 
  49. Liang, Shuyu; Neisius, N. Matthias; Gaan, Sabyasachi (2013-11-01). "Recent developments in flame retardant polymeric coatings" (in en). Progress in Organic Coatings 76 (11): 1642–1665. doi:10.1016/j.porgcoat.2013.07.014. ISSN 0300-9440. https://www.sciencedirect.com/science/article/pii/S030094401300204X. 
  50. Gu, Jun-wei; Zhang, Guang-cheng; Dong, Shan-lai; Zhang, Qiu-yu; Kong, Jie (2007-06-25). "Study on preparation and fire-retardant mechanism analysis of intumescent flame-retardant coatings" (in en). Surface and Coatings Technology 201 (18): 7835–7841. doi:10.1016/j.surfcoat.2007.03.020. ISSN 0257-8972. https://www.sciencedirect.com/science/article/pii/S0257897207003349. 
  51. Weil, Edward D. (May 2011). "Fire-Protective and Flame-Retardant Coatings - A State-of-the-Art Review" (in en). Journal of Fire Sciences 29 (3): 259–296. doi:10.1177/0734904110395469. ISSN 0734-9041. http://journals.sagepub.com/doi/10.1177/0734904110395469. 
  52. Naiker, Vidhukrishnan E.; Mestry, Siddhesh; Nirgude, Tejal; Gadgeel, Arjit; Mhaske, S. T. (2023-01-01). "Recent developments in phosphorous-containing bio-based flame-retardant (FR) materials for coatings: an attentive review" (in en). Journal of Coatings Technology and Research 20 (1): 113–139. doi:10.1007/s11998-022-00685-z. ISSN 1935-3804. https://doi.org/10.1007/s11998-022-00685-z. 
  53. Puri, Ravindra G.; Khanna, A. S. (2017-01-01). "Intumescent coatings: A review on recent progress" (in en). Journal of Coatings Technology and Research 14 (1): 1–20. doi:10.1007/s11998-016-9815-3. ISSN 1935-3804. https://doi.org/10.1007/s11998-016-9815-3. 
  54. Thomas, P. (1998-12-01). "The use of fluoropolymers for non-stick cooking utensils" (in en). Surface Coatings International 81 (12): 604–609. doi:10.1007/BF02693055. ISSN 1356-0751. https://doi.org/10.1007/BF02693055. 
  55. Yao, Junyi; Guan, Yiyang; Park, Yunhwan; Choi, Yoon E; Kim, Hyun Soo; Park, Jaewon (2021-03-04). "Optimization of PTFE Coating on PDMS Surfaces for Inhibition of Hydrophobic Molecule Absorption for Increased Optical Detection Sensitivity" (in en). Sensors 21 (5): 1754. doi:10.3390/s21051754. ISSN 1424-8220. PMID 33806281. Bibcode2021Senso..21.1754Y. 
  56. "Radiation-Cured Coatings Continue to Experience Growth" (in en). https://www.coatingstech-digital.org/coatingstech/june_2021/MobilePagedArticle.action?articleId=1697302. 
  57. Walls, J. M. (1981-06-19). "The application of surface analytical techniques to thin films and surface coatings" (in en). Thin Solid Films 80 (1): 213–220. doi:10.1016/0040-6090(81)90224-8. ISSN 0040-6090. Bibcode1981TSF....80..213W. https://dx.doi.org/10.1016/0040-6090%2881%2990224-8. 
  58. Benninghoven, A. (1976-12-01). "Characterization of coatings" (in en). Thin Solid Films 39: 3–23. doi:10.1016/0040-6090(76)90620-9. ISSN 0040-6090. Bibcode1976TSF....39....3B. https://dx.doi.org/10.1016/0040-6090%2876%2990620-9. 
  59. Porter, Stuart C.; Felton, Linda A. (2010-01-21). "Techniques to assess film coatings and evaluate film-coated products". Drug Development and Industrial Pharmacy 36 (2): 128–142. doi:10.3109/03639040903433757. ISSN 0363-9045. PMID 20050727. https://doi.org/10.3109/03639040903433757. 
  60. Doménech-Carbó, María Teresa (2008-07-28). "Novel analytical methods for characterising binding media and protective coatings in artworks" (in en). Analytica Chimica Acta 621 (2): 109–139. doi:10.1016/j.aca.2008.05.056. ISSN 0003-2670. PMID 18573376. Bibcode2008AcAC..621..109D. https://www.sciencedirect.com/science/article/pii/S0003267008009586. 
  61. Garcia-Ayuso, G.; Vázquez, L.; Martínez-Duart, J. M. (1996-03-01). "Atomic force microscopy (AFM) morphological surface characterization of transparent gas barrier coatings on plastic films" (in en). Surface and Coatings Technology 80 (1): 203–206. doi:10.1016/0257-8972(95)02712-2. ISSN 0257-8972. https://dx.doi.org/10.1016/0257-8972%2895%2902712-2. 
  62. Caniglia, Giada; Kranz, Christine (2020-09-01). "Scanning electrochemical microscopy and its potential for studying biofilms and antimicrobial coatings" (in en). Analytical and Bioanalytical Chemistry 412 (24): 6133–6148. doi:10.1007/s00216-020-02782-7. ISSN 1618-2650. PMID 32691088. PMC 7442582. https://doi.org/10.1007/s00216-020-02782-7. 
  63. Erich, S. J. F.; Laven, J.; Pel, L.; Huinink, H. P.; Kopinga, K. (2005-03-01). "Comparison of NMR and confocal Raman microscopy as coatings research tools" (in en). Progress in Organic Coatings 52 (3): 210–216. doi:10.1016/j.porgcoat.2004.12.002. ISSN 0300-9440. https://www.sciencedirect.com/science/article/pii/S030094400400267X. 
  64. Revenko, A. G.; Tsvetyansky, A. L.; Eritenko, A. N. (2022-08-01). "X-ray fluorescence analysis of solid-state films, layers, and coatings" (in en). Radiation Physics and Chemistry 197: 110157. doi:10.1016/j.radphyschem.2022.110157. ISSN 0969-806X. Bibcode2022RaPC..19710157R. https://www.sciencedirect.com/science/article/pii/S0969806X22001992. 
  65. Schorr, Brian S; Stein, Kevin J; Marder, Arnold R (1999-02-03). "Characterization of Thermal Spray Coatings" (in en). Materials Characterization 42 (2): 93–100. doi:10.1016/S1044-5803(98)00048-5. ISSN 1044-5803. https://www.sciencedirect.com/science/article/pii/S1044580398000485. 
  66. Martín Sánchez, A.; Nuevo, M. J.; Ojeda, M. A.; Guerra Millán, S.; Celestino, S.; Rodríguez González, E. (2020-02-01). "Analytical techniques applied to the study of mortars and coatings from the Tartessic archaeological site "El Turuñuelo" (Spain)" (in en). Radiation Physics and Chemistry. Special issue dedicated to the 14th International Symposium on Radiation Physics 167: 108341. doi:10.1016/j.radphyschem.2019.05.031. ISSN 0969-806X. Bibcode2020RaPC..16708341M. https://www.sciencedirect.com/science/article/pii/S0969806X18313616. 
  67. Kravanja, Katja Andrina; Finšgar, Matjaž (December 2021). "Analytical Techniques for the Characterization of Bioactive Coatings for Orthopaedic Implants" (in en). Biomedicines 9 (12): 1936. doi:10.3390/biomedicines9121936. ISSN 2227-9059. PMID 34944750. 
  68. Cook, Desmond C. (2005-10-01). "Spectroscopic identification of protective and non-protective corrosion coatings on steel structures in marine environments" (in en). Corrosion Science. International Symposium on Corrosion and Protection of Marine Structures—in memory of the late Professor Toshihei Misawa 47 (10): 2550–2570. doi:10.1016/j.corsci.2004.10.018. ISSN 0010-938X. https://www.sciencedirect.com/science/article/pii/S0010938X05001186. 
  69. Lestido-Cardama, Antía; Vázquez-Loureiro, Patricia; Sendón, Raquel; Bustos, Juana; Santillana, Mª Isabel; Paseiro Losada, Perfecto; Rodríguez Bernaldo de Quirós, Ana (January 2022). "Characterization of Polyester Coatings Intended for Food Contact by Different Analytical Techniques and Migration Testing by LC-MSn" (in en). Polymers 14 (3): 487. doi:10.3390/polym14030487. ISSN 2073-4360. PMID 35160476. 
  70. Mansfield, Elisabeth; Tyner, Katherine M.; Poling, Christopher M.; Blacklock, Jenifer L. (2014-02-04). "Determination of Nanoparticle Surface Coatings and Nanoparticle Purity Using Microscale Thermogravimetric Analysis" (in en). Analytical Chemistry 86 (3): 1478–1484. doi:10.1021/ac402888v. ISSN 0003-2700. PMID 24400715. https://pubs.acs.org/doi/10.1021/ac402888v. 
  71. Müller, Bodo (2006). Coatings formulation : an international textbook. Urlich Poth. Hannover: Vincentz. ISBN 3-87870-177-2. OCLC 76886114. https://www.worldcat.org/oclc/76886114. 
  72. Müller, Bodo (2006). Coatings formulation : an international textbook. Urlich Poth. Hannover: Vincentz. p. 19. ISBN 3-87870-177-2. OCLC 76886114. https://www.worldcat.org/oclc/76886114. 
  73. "CoatingsTech - Novel Natural Additives for Surface Coatings" (in en). https://www.coatingstech-digital.org/coatingstech/library/item/july_2022/4025808/. 
  74. Puthran, Dayanand; Patil, Dilip (2023-01-01). "Usage of heavy metal-free compounds in surface coatings" (in en). Journal of Coatings Technology and Research 20 (1): 87–112. doi:10.1007/s11998-022-00648-4. ISSN 1935-3804. https://doi.org/10.1007/s11998-022-00648-4. 
  75. Fristad, W. E. (2000). "Epoxy Coatings for Automotive Corrosion Protection". SAE Technical Paper Series. 1. doi:10.4271/2000-01-0617. 
  76. "Method of coating strip material" US patent 2681294, issued 1951-08-23
  77. Beeker, L.Y. (March 2018). "Open-source parametric 3-D printed slot die system for thin film semiconductor processing". Additive Manufacturing 20: 90–100. doi:10.1016/j.addma.2017.12.004. ISSN 2214-8604. https://hal.archives-ouvertes.fr/hal-02111388/file/Open-source_Parametric_3-D_Printed_Slot.pdf. 
  78. "Slot Die Coating - nTact" (in en-US). nTact. https://ntact.com/applications/slot-die-coating/. 
  79. "Open Source 3D printing cuts cost from $4,000 to only $0.25 says new study - 3D Printing Industry" (in en-US). 16 January 2018. https://3dprintingindustry.com/news/open-source-3d-printing-cuts-cost-4000-0-25-says-new-study-127484/. 

Further reading