Physics:Eckhaus equation
From HandWiki
In mathematical physics, the Eckhaus equation – or the Kundu–Eckhaus equation – is a nonlinear partial differential equation within the nonlinear Schrödinger class:[1]
- [math]\displaystyle{ i \psi_t + \psi_{xx} +2 \left( |\psi|^2 \right)_x\, \psi + |\psi|^4\, \psi = 0. }[/math]
The equation was independently introduced by Wiktor Eckhaus and by Anjan Kundu to model the propagation of waves in dispersive media.[2][3]
Linearization
The Eckhaus equation can be linearized to the linear Schrödinger equation:[4]
- [math]\displaystyle{ i \varphi_t + \varphi_{xx} =0, }[/math]
through the non-linear transformation:[5]
- [math]\displaystyle{ \varphi(x,t) = \psi(x,t)\, \exp\left( \int_{-\infty}^x |\psi(x^\prime,t)|^2\; \text{d}x^\prime \right). }[/math]
The inverse transformation is:
- [math]\displaystyle{ \psi(x,t) = \frac{\varphi(x,t)}{\displaystyle \left( 1 + 2\, \int_{-\infty}^x |\varphi(x^\prime,t)|^2\; \text{d}x^\prime \right)^{1/2}}. }[/math]
This linearization also implies that the Eckhaus equation is integrable.
Notes
References
- Ablowitz, M.J.; Ahrens, C.D.; De Lillo, S. (2005), "On a "quasi" integrable discrete Eckhaus equation", Journal of Nonlinear Mathematical Physics 12 (Supplement 1): 1–12, doi:10.2991/jnmp.2005.12.s1.1, Bibcode: 2005JNMP...12S...1A
- Calogero, F.; De Lillo, S. (1987), "The Eckhaus PDE iψt + ψxx+ 2(|ψ|2)x ψ + |ψ|4 ψ = 0", Inverse Problems 3 (4): 633–682, doi:10.1088/0266-5611/3/4/012, Bibcode: 1987InvPr...3..633C
- Eckhaus, W. (1985), The long-time behaviour for perturbed wave-equations and related problems, Department of Mathematics, University of Utrecht, Preprint no. 404.
Published in part in: Eckhaus, W. (1986), "The long-time behaviour for perturbed wave-equations and related problems", in Kröner, E.; Kirchgässner, K., Trends in applications of pure mathematics to mechanics, Lecture Notes in Physics, 249, Berlin: Springer, pp. 168–194, doi:10.1007/BFb0016391, ISBN 978-3-540-16467-8 - Kundu, A. (1984), "Landau–Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger-type equations", Journal of Mathematical Physics 25 (12): 3433–3438, doi:10.1063/1.526113, Bibcode: 1984JMP....25.3433K
- Taghizadeh, N.; Mirzazadeh, M.; Tascan, F. (2012), "The first-integral method applied to the Eckhaus equation", Applied Mathematics Letters 25 (5): 798–802, doi:10.1016/j.aml.2011.10.021
- Zwillinger, D. (1998), Handbook of differential equations (3rd ed.), Academic Press, ISBN 978-0-12-784396-4
Original source: https://en.wikipedia.org/wiki/Eckhaus equation.
Read more |