Physics:Havriliak–Negami relaxation
The Havriliak–Negami relaxation is an empirical modification of the Debye relaxation model in electromagnetism. Unlike the Debye model, the Havriliak–Negami relaxation accounts for the asymmetry and broadness of the dielectric dispersion curve. The model was first used to describe the dielectric relaxation of some polymers,[1] by adding two exponential parameters to the Debye equation:
where
Depending on application, the Fourier transform of the stretched exponential function can be a viable alternative that has one parameter less.
For
Mathematical properties
Real and imaginary parts
The storage part
and
with
Loss peak
The maximum of the loss part lies at
Superposition of Lorentzians
The Havriliak–Negami relaxation can be expressed as a superposition of individual Debye relaxations
with the real valued distribution function
where
if the argument of the arctangent is positive, else[2]
This section may stray from the topic of the article. (January 2022) |
Noteworthy,
and complex valued for
Logarithmic moments
The first logarithmic moment of this distribution, the average logarithmic relaxation time is
where
Inverse Fourier transform
The inverse Fourier transform of the Havriliak-Negami function (the corresponding time-domain relaxation function) can be numerically calculated.[4] It can be shown that the series expansions involved are special cases of the Fox–Wright function.[5] In particular, in the time-domain the corresponding of
where
is a special instance of the Fox–Wright function and, precisely, it is the three parameters Mittag-Leffler function[6] also known as the Prabhakar function. The function
See also
- Debye relaxation
- Cole–Cole equation
- Cole–Davidson equation
- Curie–von Schweidler law
- Dielectric spectroscopy
- Dipole
References
- ↑ Havriliak, S.; Negami, S. (1967). "A complex plane representation of dielectric and mechanical relaxation processes in some polymers". Polymer 8: 161–210. doi:10.1016/0032-3861(67)90021-3.
- ↑ Zorn, R. (1999). "Applicability of Distribution Functions for the Havriliak–Negami Spectral Function". Journal of Polymer Science Part B 37 (10): 1043–1044. doi:10.1002/(SICI)1099-0488(19990515)37:10<1043::AID-POLB9>3.3.CO;2-8. Bibcode: 1999JPoSB..37.1043Z.
- ↑ Zorn, R. (2002). "Logarithmic moments of relaxation time distributions". Journal of Chemical Physics 116 (8): 3204–3209. doi:10.1063/1.1446035. Bibcode: 2002JChPh.116.3204Z. http://juser.fz-juelich.de/record/1954/files/10418.pdf.
- ↑ Schönhals, A. (1991). "Fast calculation of the time dependent dielectric permittivity for the Havriliak-Negami function". Acta Polymerica 42: 149–151.
- ↑ Hilfer, J. (2002). "H-function representations for stretched exponential relaxation and non-Debye susceptibilities in glassy systems". Physical Review E 65: 061510. doi:10.1103/physreve.65.061510. Bibcode: 2002PhRvE..65f1510H.
- ↑ Gorenflo, Rudolf; Kilbas, Anatoly A.; Mainardi, Francesco; Rogosin, Sergei V. (2014). Springer. ed. Mittag-Leffler Functions, Related Topics and Applications. ISBN 978-3-662-43929-6.
- ↑ Garrappa, Roberto. "The Mittag-Leffler function". http://www.mathworks.com/matlabcentral/fileexchange/48154-the-mittag-leffler-function.
Original source: https://en.wikipedia.org/wiki/Havriliak–Negami relaxation.
Read more |