Physics:Minimal subtraction scheme
Renormalization and regularization |
---|
In quantum field theory, the minimal subtraction scheme, or MS scheme, is a particular renormalization scheme used to absorb the infinities that arise in perturbative calculations beyond leading order, introduced independently by Gerard 't Hooft and Steven Weinberg in 1973.[1][2] The MS scheme consists of absorbing only the divergent part of the radiative corrections into the counterterms.
In the similar and more widely used modified minimal subtraction, or MS-bar scheme ([math]\displaystyle{ \overline{\text{MS}} }[/math]), one absorbs the divergent part plus a universal constant that always arises along with the divergence in Feynman diagram calculations into the counterterms. When using dimensional regularization, i.e. [math]\displaystyle{ d^4 p \to \mu^{4-d} d^d p }[/math], it is implemented by rescaling the renormalization scale: [math]\displaystyle{ \mu^2 \to \mu^2 \frac{ e^{\gamma_{\rm E}} }{4 \pi} }[/math], with [math]\displaystyle{ \gamma_{\rm E} }[/math] the Euler–Mascheroni constant.
References
- ↑ "Dimensional regularization and the renormalization group". Nuclear Physics B 61: 455–468. 1973. doi:10.1016/0550-3213(73)90376-3. Bibcode: 1973NuPhB..61..455T. https://cds.cern.ch/record/880603/files/CM-P00060417.pdf.
- ↑ "New Approach to the Renormalization Group". Physical Review D 8 (10): 3497–3509. 1973. doi:10.1103/PhysRevD.8.3497. Bibcode: 1973PhRvD...8.3497W.
Other
- "Deep Inelastic Scattering Beyond the Leading Order in Asymptotically Free Gauge Theories". Physical Review D 18 (11): 3998–4017. 1978. doi:10.1103/PhysRevD.18.3998. Bibcode: 1978PhRvD..18.3998B. https://cds.cern.ch/record/870641/files/c78-08-23-p234.pdf.
- Collins, J.C. (1984). Renormalization. Cambridge Monographs on Mathematical Physics. Cambridge University Press. ISBN 978-0-521-24261-5.
Original source: https://en.wikipedia.org/wiki/Minimal subtraction scheme.
Read more |