Physics:Open microfluidics

From HandWiki
Jump to: navigation, search

Microfluidics refers to the flow of fluid in channels or networks with at least one dimension on the micron scale.[1][2] In open microfluidics, also referred to as open surface microfluidics or open-space microfluidics, at least one boundary confining the fluid flow of a system is removed, exposing the fluid to air or another interface such as a second fluid.[1][3][4]

Types of open microfluidics

Open microfluidics can be categorized into various subsets. Some examples of these subsets include open-channel microfluidics, paper-based, and thread-based microfluidics.[1][5][6]

Open-channel microfluidics

In open-channel microfluidics, a surface tension-driven capillary flow occurs and is referred to as spontaneous capillary flow (SCF).[1][7] SCF occurs when the pressure at the advancing meniscus is negative.[1] The geometry of the channel and contact angle of fluids has been shown to produce SCF if the following equation is true.

[math]{pf \over pw}\lt  cos(\theta)[/math]

Where pf is the free perimeter of the channel (i.e., the interface not in contact with the channel wall), and pw is the wetted perimeter[8] (i.e., the walls in contact with the fluid), and θ is the contact angle of the fluid on the material of the device.[1][5]

Paper-based microfluidics

Paper-based microfluidics utilizes the wicking ability of paper for functional readouts.[9][10] Paper-based microfluidics is an attractive method because paper is cheap, easily accessible, and has a low environmental impact. Paper is also versatile because it is available in various thicknesses and pore sizes.[9] Coatings such as wax have been used to guide flow in paper microfluidics.[11] In some cases, dissolvable barriers have been used to create boundaries on the paper and control the fluid flow.[12] The application of paper as a diagnostic tool has shown to be powerful because it has successfully been used to detect glucose levels,[13] bacteria,[14] viruses,[15] and other components in whole blood.[16] Cell culture methods within paper have also been developed.[17][18] Lateral flow immunoassays, such as those used in pregnancy tests, are one example of the application of paper for point of care or home-based diagnostics.[19] Disadvantages include difficulty of fluid retention and high limits of detection.

Thread-based microfluidics

Thread-based microfluidics, an offshoot from paper-based microfluidics, utilizes the same capillary based wicking capabilities.[20] Common thread materials include nitrocellulose, rayon, nylon, hemp, wool, polyester, and silk.[21] Threads are versatile because they can be woven to form specific patterns.[22] Additionally, two or more threads can converge together in a knot bringing two separate ‘streams’ of fluid together as a reagent mixing method.[23] Threads are also relatively strong and difficult to break from handling which makes them stable over time and easy to transport.[21] Thread-based microfluidics has been applied to 3D tissue engineering and analyte analysis.[24][25]

Advantages

One of the main advantages of open microfluidics is ease of accessibility which enables intervention (i.e., for adding or removing reagents) to the flowing liquid in the system.[26] Open microfluidics also allows simplicity of fabrication thus eliminating the need to bond surfaces. When one of the boundaries of a system is removed, a larger liquid-gas interface results, which enables liquid-gas reactions.[1][27] Open microfluidic devices enable better optical transparency because at least one side of the system is not covered by the material which can reduce autofluorescence during imaging.[28] Further, open systems minimize and sometimes eliminate bubble formation, a common problem in closed systems.[1]

In closed system microfluidics, the flow in the channels is driven by pressure via pumps (syringe pumps), valves (trigger valves), or electrical field.[29] An example of one of these methods for achieving low flow rates using temperature-controlled evaporation has been described for an open microfluidics system, allowing for long incubation hours for biological applications and requiring small sample volumes.[30] Open system microfluidics enable surface-tension driven flow in channels thereby eliminating the need for external pumping methods.[26][31] For example, some open microfluidic devices consist of a reservoir port and pumping port that can be filled with fluid using a pipette.[1][5][26] Eliminating external pumping requirements lowers cost and enables device use in all laboratories with pipettes.[27]

Disadvantages

Some drawbacks of open microfluidics include evaporation,[32] contamination,[33] and limited flow rate.[4] Open systems are susceptible to evaporation which can greatly affect readouts when fluid volumes are on the microscale.[32] Additionally, due to the nature of open systems, they are more susceptible to contamination than closed systems.[33] Cell culture and other methods where contamination or small particulates are a concern must be carefully performed to prevent contamination. Lastly, open systems have a limited flow rate because induced pressures cannot be used to drive flow.[4]

Applications

Like many microfluidic technologies, open system microfluidics has been applied to nanotechnology, biotechnology, fuel cells, and point of care (POC) testing.[1][4][34] For cell-based studies, open-channel microfluidic devices enable access to cells for single cell probing within the channel.[35] Other applications include capillary gel electrophoresis, water-in-oil emulsions, and biosensors for POC systems.[3][36][37] Suspended microfluidic devices, open microfluidic devices where the floor of the device is removed, have been used to study cellular diffusion and migration of cancer cells.[5] Suspended and rail-based microfluidics have been used for micropatterning and studying cell communication.[1]

References

  1. 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1952-, Berthier, Jean (2016). Open microfluidics. Brakke, Kenneth A., Berthier, Erwin.. Hoboken, NJ: Wiley. ISBN 9781118720936. OCLC 953661963. 
  2. Whitesides, George M. (July 2006). "The origins and the future of microfluidics". Nature 442 (7101): 368–373. doi:10.1038/nature05058. ISSN 0028-0836. PMID 16871203. Bibcode2006Natur.442..368W. 
  3. 3.0 3.1 Pfohl, Thomas; Mugele, Frieder; Seemann, Ralf; Herminghaus, Stephan (2003-12-08). "Trends in Microfluidics with Complex Fluids". ChemPhysChem 4 (12): 1291–1298. doi:10.1002/cphc.200300847. ISSN 1439-4235. PMID 14714376. 
  4. 4.0 4.1 4.2 4.3 Kaigala, Govind V.; Lovchik, Robert D.; Delamarche, Emmanuel (2012-10-30). "Microfluidics in the "Open Space" for Performing Localized Chemistry on Biological Interfaces". Angewandte Chemie International Edition 51 (45): 11224–11240. doi:10.1002/anie.201201798. ISSN 1433-7851. PMID 23111955. 
  5. 5.0 5.1 5.2 5.3 Casavant, B. P.; Berthier, E.; Theberge, A. B.; Berthier, J.; Montanez-Sauri, S. I.; Bischel, L. L.; Brakke, K.; Hedman, C. J. et al. (2013-05-31). "Suspended microfluidics". Proceedings of the National Academy of Sciences 110 (25): 10111–10116. doi:10.1073/pnas.1302566110. ISSN 0027-8424. PMID 23729815. Bibcode2013PNAS..11010111C. 
  6. Yamada, Kentaro; Shibata, Hiroyuki; Suzuki, Koji; Citterio, Daniel (2017). "Toward practical application of paper-based microfluidics for medical diagnostics: state-of-the-art and challenges". Lab on a Chip 17 (7): 1206–1249. doi:10.1039/c6lc01577h. ISSN 1473-0197. PMID 28251200. 
  7. Yang, Die; Krasowska, Marta; Priest, Craig; Popescu, Mihail N.; Ralston, John (2011-09-07). "Dynamics of Capillary-Driven Flow in Open Microchannels". The Journal of Physical Chemistry C 115 (38): 18761–18769. doi:10.1021/jp2065826. ISSN 1932-7447. 
  8. "Wetted perimeter" (in en), Wikipedia, 2018-11-27, https://en.wikipedia.org/w/index.php?title=Wetted_perimeter&oldid=870799531, retrieved 2019-04-16 
  9. 9.0 9.1 Hosseini, Samira; Vázquez-Villegas, Patricia; Martínez-Chapa, Sergio O. (2017-08-22). "Paper and Fiber-Based Bio-Diagnostic Platforms: Current Challenges and Future Needs". Applied Sciences 7 (8): 863. doi:10.3390/app7080863. 
  10. Swanson, Christina; Lee, Stephen; Aranyosi, A.J.; Tien, Ben; Chan, Carol; Wong, Michelle; Lowe, Jared; Jain, Sidhartha et al. (2015-09-01). "Rapid light transmittance measurements in paper-based microfluidic devices". Sensing and Bio-Sensing Research 5: 55–61. doi:10.1016/j.sbsr.2015.07.005. ISSN 2214-1804. 
  11. Müller, R. H.; Clegg, D. L. (September 1949). "Automatic Paper Chromatography". Analytical Chemistry 21 (9): 1123–1125. doi:10.1021/ac60033a032. ISSN 0003-2700. 
  12. Fu, Elain; Lutz, Barry; Kauffman, Peter; Yager, Paul (2010). "Controlled reagent transport in disposable 2D paper networks". Lab on a Chip 10 (7): 918–20. doi:10.1039/b919614e. ISSN 1473-0197. PMID 20300678. 
  13. Martinez, Andres W.; Phillips, Scott T.; Carrilho, Emanuel; Thomas, Samuel W.; Sindi, Hayat; Whitesides, George M. (May 2008). "Simple Telemedicine for Developing Regions: Camera Phones and Paper-Based Microfluidic Devices for Real-Time, Off-Site Diagnosis". Analytical Chemistry 80 (10): 3699–3707. doi:10.1021/ac800112r. ISSN 0003-2700. PMID 18407617. 
  14. Shih, Cheng-Min; Chang, Chia-Ling; Hsu, Min-Yen; Lin, Jyun-Yu; Kuan, Chen-Meng; Wang, Hsi-Kai; Huang, Chun-Te; Chung, Mu-Chi et al. (December 2015). "Paper-based ELISA to rapidly detect Escherichia coli". Talanta 145: 2–5. doi:10.1016/j.talanta.2015.07.051. ISSN 0039-9140. PMID 26459436. 
  15. Wang, Hsi-Kai; Tsai, Cheng-Han; Chen, Kuan-Hung; Tang, Chung-Tao; Leou, Jiun-Shyang; Li, Pi-Chun; Tang, Yin-Liang; Hsieh, Hsyue-Jen et al. (February 2014). "Immunoassays: Cellulose-Based Diagnostic Devices for Diagnosing Serotype-2 Dengue Fever in Human Serum (Adv. Healthcare Mater. 2/2014)". Advanced Healthcare Materials 3 (2): 154. doi:10.1002/adhm.201470008. ISSN 2192-2640. 
  16. Yang, Xiaoxi; Forouzan, Omid; Brown, Theodore P.; Shevkoplyas, Sergey S. (2012). "Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices". Lab Chip 12 (2): 274–280. doi:10.1039/c1lc20803a. ISSN 1473-0197. PMID 22094609. 
  17. Tao, Fang Fang; Xiao, Xia; Lei, Kin Fong; Lee, I-Chi (2015-03-18). "Paper-based cell culture microfluidic system". BioChip Journal 9 (2): 97–104. doi:10.1007/s13206-015-9202-7. ISSN 1976-0280. 
  18. Walsh, David I.; Lalli, Mark L.; Kassas, Juliette M.; Asthagiri, Anand R.; Murthy, Shashi K. (2015-05-18). "Cell Chemotaxis on Paper for Diagnostics". Analytical Chemistry 87 (11): 5505–5510. doi:10.1021/acs.analchem.5b00726. ISSN 0003-2700. PMID 25938457. 
  19. Lam, Trinh; Devadhasan, Jasmine P.; Howse, Ryan; Kim, Jungkyu (2017-04-26). "A Chemically Patterned Microfluidic Paper-based Analytical Device (C-µPAD) for Point-of-Care Diagnostics". Scientific Reports 7 (1): 1188. doi:10.1038/s41598-017-01343-w. ISSN 2045-2322. PMID 28446756. Bibcode2017NatSR...7.1188L. 
  20. Erenas, Miguel M.; de Orbe-Payá, Ignacio; Capitan-Vallvey, Luis Fermin (2016-04-29). "Surface Modified Thread-Based Microfluidic Analytical Device for Selective Potassium Analysis". Analytical Chemistry 88 (10): 5331–5337. doi:10.1021/acs.analchem.6b00633. ISSN 0003-2700. PMID 27077212. 
  21. 21.0 21.1 Reches, Meital; Mirica, Katherine A.; Dasgupta, Rohit; Dickey, Michael D.; Butte, Manish J.; Whitesides, George M. (2010-05-24). "Thread as a Matrix for Biomedical Assays". ACS Applied Materials & Interfaces 2 (6): 1722–1728. doi:10.1021/am1002266. ISSN 1944-8244. PMID 20496913. 
  22. Li, Xu; Tian, Junfei; Shen, Wei (2009-12-09). "Thread as a Versatile Material for Low-Cost Microfluidic Diagnostics". ACS Applied Materials & Interfaces 2 (1): 1–6. doi:10.1021/am9006148. ISSN 1944-8244. PMID 20356211. 
  23. Ballerini, David R.; Li, Xu; Shen, Wei (March 2011). "Flow control concepts for thread-based microfluidic devices". Biomicrofluidics 5 (1): 014105. doi:10.1063/1.3567094. ISSN 1932-1058. PMID 21483659. 
  24. Mostafalu, Pooria; Akbari, Mohsen; Alberti, Kyle A.; Xu, Qiaobing; Khademhosseini, Ali; Sonkusale, Sameer R. (2016-07-18). "A toolkit of thread-based microfluidics, sensors and electronics for 3D tissue embedding for medical diagnostics". Microsystems & Nanoengineering 2 (1): 16039. doi:10.1038/micronano.2016.39. ISSN 2055-7434. PMID 31057832. 
  25. Erenas, Miguel M.; de Orbe-Payá, Ignacio; Capitan-Vallvey, Luis Fermin (2016-04-29). "Surface Modified Thread-Based Microfluidic Analytical Device for Selective Potassium Analysis". Analytical Chemistry 88 (10): 5331–5337. doi:10.1021/acs.analchem.6b00633. ISSN 0003-2700. PMID 27077212. 
  26. 26.0 26.1 26.2 Lee, Jing J.; Berthier, Jean; Brakke, Kenneth A.; Dostie, Ashley M.; Theberge, Ashleigh B.; Berthier, Erwin (2018-04-25). "Droplet Behavior in Open Biphasic Microfluidics". Langmuir 34 (18): 5358–5366. doi:10.1021/acs.langmuir.8b00380. ISSN 0743-7463. PMID 29692173. 
  27. 27.0 27.1 Zhao, B. (2001-02-09). "Surface-Directed Liquid Flow Inside Microchannels". Science 291 (5506): 1023–1026. doi:10.1126/science.291.5506.1023. ISSN 0036-8075. PMID 11161212. Bibcode2001Sci...291.1023Z. 
  28. Young, Edmond W.K.; Berthier, Erwin; Beebe, David J. (2013-01-02). "Assessment of enhanced autofluorescence and impact on cell microscopy for microfabricated thermoplastic devices". Analytical Chemistry 85 (1): 44–49. doi:10.1021/ac3034773. ISSN 0003-2700. PMID 23249264. 
  29. Sackmann, Eric K.; Fulton, Anna L.; Beebe, David J. (2014-03-12). "The present and future role of microfluidics in biomedical research". Nature 507 (7491): 181–189. doi:10.1038/nature13118. ISSN 0028-0836. PMID 24622198. Bibcode2014Natur.507..181S. 
  30. Delamarche, Emmanuel; Hunziker, Patrick; Schmid, Heinz; Bentley, Steven; Zimmermann, Martin (2005-11-11). "Continuous flow in open microfluidics using controlled evaporation" (in en). Lab on a Chip 5 (12): 1355–1359. doi:10.1039/B510044E. ISSN 1473-0189. PMID 16286965. 
  31. Brakke, Kenneth A. (2015-01-31). The Motion of a Surface by Its Mean Curvature. (MN-20). Princeton: Princeton University Press. doi:10.1515/9781400867431. ISBN 9781400867431. 
  32. 32.0 32.1 Kachel, Sibylle; Zhou, Ying; Scharfer, Philip; Vrančić, Christian; Petrich, Wolfgang; Schabel, Wilhelm (2014). "Evaporation from open microchannel grooves". Lab Chip 14 (4): 771–778. doi:10.1039/c3lc50892g. ISSN 1473-0197. PMID 24345870. 
  33. 33.0 33.1 Higashi, Kazuhiko; Ogawa, Miho; Fujimoto, Kazuma; Onoe, Hiroaki; Miki, Norihisa (2017-06-03). "Hollow Hydrogel Microfiber Encapsulating Microorganisms for Mass-Cultivation in Open Systems". Micromachines 8 (6): 176. doi:10.3390/mi8060176. ISSN 2072-666X. 
  34. Dak, Piyush; Ebrahimi, Aida; Swaminathan, Vikhram; Duarte-Guevara, Carlos; Bashir, Rashid; Alam, Muhammad (2016-04-14). "Droplet-based Biosensing for Lab-on-a-Chip, Open Microfluidics Platforms". Biosensors 6 (2): 14. doi:10.3390/bios6020014. ISSN 2079-6374. PMID 27089377. 
  35. Hsu, Chia-Hsien; Chen, Chihchen; Folch, Albert (2004). ""Microcanals" for micropipette access to single cells in microfluidic environments". Lab Chip 4 (5): 420–424. doi:10.1039/b404956j. ISSN 1473-0197. PMID 15472724. 
  36. Li, C.; Boban, M.; Tuteja, A. (2017). "Open-channel, water-in-oil emulsification in paper-based microfluidic devices". Lab on a Chip 17 (8): 1436–1441. doi:10.1039/c7lc00114b. ISSN 1473-0197. PMID 28322402. 
  37. Gutzweiler, Ludwig; Gleichmann, Tobias; Tanguy, Laurent; Koltay, Peter; Zengerle, Roland; Riegger, Lutz (2017-05-15). "Open microfluidic gel electrophoresis: Rapid and low cost separation and analysis of DNA at the nanoliter scale". Electrophoresis 38 (13–14): 1764–1770. doi:10.1002/elps.201700001. ISSN 0173-0835. PMID 28426159. 

https://en.wikipedia.org/wiki/Open microfluidics was the original source. Read more.