Prewellordering

From HandWiki
Short description: Set theory concept

In set theory, a prewellordering on a set [math]\displaystyle{ X }[/math] is a preorder [math]\displaystyle{ \leq }[/math] on [math]\displaystyle{ X }[/math] (a transitive and reflexive relation on [math]\displaystyle{ X }[/math]) that is strongly connected (meaning that any two points are comparable) and well-founded in the sense that the induced relation [math]\displaystyle{ x \lt y }[/math] defined by [math]\displaystyle{ x \leq y \text{ and } y \nleq x }[/math] is a well-founded relation.

Prewellordering on a set

A prewellordering on a set [math]\displaystyle{ X }[/math] is a homogeneous binary relation [math]\displaystyle{ \,\leq\, }[/math] on [math]\displaystyle{ X }[/math] that satisfies the following conditions:[1]

  1. Reflexivity: [math]\displaystyle{ x \leq x }[/math] for all [math]\displaystyle{ x \in X. }[/math]
  2. Transitivity: if [math]\displaystyle{ x \lt y }[/math] and [math]\displaystyle{ y \lt z }[/math] then [math]\displaystyle{ x \lt z }[/math] for all [math]\displaystyle{ x, y, z \in X. }[/math]
  3. Total/Strongly connected: [math]\displaystyle{ x \leq y }[/math] or [math]\displaystyle{ y \leq x }[/math] for all [math]\displaystyle{ x, y \in X. }[/math]
  4. for every non-empty subset [math]\displaystyle{ S \subseteq X, }[/math] there exists some [math]\displaystyle{ m \in S }[/math] such that [math]\displaystyle{ m \leq s }[/math] for all [math]\displaystyle{ s \in S. }[/math]
    • This condition is equivalent to the induced strict preorder [math]\displaystyle{ x \lt y }[/math] defined by [math]\displaystyle{ x \leq y }[/math] and [math]\displaystyle{ y \nleq x }[/math] being a well-founded relation.

A homogeneous binary relation [math]\displaystyle{ \,\leq\, }[/math] on [math]\displaystyle{ X }[/math] is a prewellordering if and only if there exists a surjection [math]\displaystyle{ \pi : X \to Y }[/math] into a well-ordered set [math]\displaystyle{ (Y, \lesssim) }[/math] such that for all [math]\displaystyle{ x, y \in X, }[/math] [math]\displaystyle{ x \leq y }[/math] if and only if [math]\displaystyle{ \pi(x) \lesssim \pi(y). }[/math][1]

Examples

Hasse diagram of the prewellordering [math]\displaystyle{ \lfloor x/4\rfloor \leq \lfloor y/5\rfloor }[/math] on the non-negative integers, shown up to 29. Cycles are indicated in red and [math]\displaystyle{ \lfloor \cdot\rfloor }[/math] denotes the floor function.
Hasse diagram of the prewellordering [math]\displaystyle{ \lfloor x/4\rfloor \leq \lfloor y/4\rfloor }[/math] on the non-negative integers, shown up to 18. The associated equivalence relation is [math]\displaystyle{ \lfloor x/4\rfloor = \lfloor y/4\rfloor; }[/math] it identifies the numbers in each light red square.

Given a set [math]\displaystyle{ A, }[/math] the binary relation on the set [math]\displaystyle{ X := \operatorname{Finite}(A) }[/math] of all finite subsets of [math]\displaystyle{ A }[/math] defined by [math]\displaystyle{ S \leq T }[/math] if and only if [math]\displaystyle{ |S| \leq |T| }[/math] (where [math]\displaystyle{ |\cdot| }[/math] denotes the set's cardinality) is a prewellordering.[1]

Properties

If [math]\displaystyle{ \leq }[/math] is a prewellordering on [math]\displaystyle{ X, }[/math] then the relation [math]\displaystyle{ \sim }[/math] defined by [math]\displaystyle{ x \sim y \text{ if and only if } x \leq y \land y \leq x }[/math] is an equivalence relation on [math]\displaystyle{ X, }[/math] and [math]\displaystyle{ \leq }[/math] induces a wellordering on the quotient [math]\displaystyle{ X / {\sim}. }[/math] The order-type of this induced wellordering is an ordinal, referred to as the length of the prewellordering.

A norm on a set [math]\displaystyle{ X }[/math] is a map from [math]\displaystyle{ X }[/math] into the ordinals. Every norm induces a prewellordering; if [math]\displaystyle{ \phi : X \to Ord }[/math] is a norm, the associated prewellordering is given by [math]\displaystyle{ x \leq y \text{ if and only if } \phi(x) \leq \phi(y) }[/math] Conversely, every prewellordering is induced by a unique regular norm (a norm [math]\displaystyle{ \phi : X \to Ord }[/math] is regular if, for any [math]\displaystyle{ x \in X }[/math] and any [math]\displaystyle{ \alpha \lt \phi(x), }[/math] there is [math]\displaystyle{ y \in X }[/math] such that [math]\displaystyle{ \phi(y) = \alpha }[/math]).

Prewellordering property

If [math]\displaystyle{ \boldsymbol{\Gamma} }[/math] is a pointclass of subsets of some collection [math]\displaystyle{ \mathcal{F} }[/math] of Polish spaces, [math]\displaystyle{ \mathcal{F} }[/math] closed under Cartesian product, and if [math]\displaystyle{ \leq }[/math] is a prewellordering of some subset [math]\displaystyle{ P }[/math] of some element [math]\displaystyle{ X }[/math] of [math]\displaystyle{ \mathcal{F}, }[/math] then [math]\displaystyle{ \leq }[/math] is said to be a [math]\displaystyle{ \boldsymbol{\Gamma} }[/math]-prewellordering of [math]\displaystyle{ P }[/math] if the relations [math]\displaystyle{ \lt ^* }[/math] and [math]\displaystyle{ \leq^* }[/math] are elements of [math]\displaystyle{ \boldsymbol{\Gamma}, }[/math] where for [math]\displaystyle{ x, y \in X, }[/math]

  1. [math]\displaystyle{ x \lt ^* y \text{ if and only if } x \in P \land (y \notin P \lor (x \leq y \land y \not\leq x)) }[/math]
  2. [math]\displaystyle{ x \leq^* y \text{ if and only if } x \in P \land (y \notin P \lor x \leq y) }[/math]

[math]\displaystyle{ \boldsymbol{\Gamma} }[/math] is said to have the prewellordering property if every set in [math]\displaystyle{ \boldsymbol{\Gamma} }[/math] admits a [math]\displaystyle{ \boldsymbol{\Gamma} }[/math]-prewellordering.

The prewellordering property is related to the stronger scale property; in practice, many pointclasses having the prewellordering property also have the scale property, which allows drawing stronger conclusions.

Examples

[math]\displaystyle{ \boldsymbol{\Pi}^1_1 }[/math] and [math]\displaystyle{ \boldsymbol{\Sigma}^1_2 }[/math] both have the prewellordering property; this is provable in ZFC alone. Assuming sufficient large cardinals, for every [math]\displaystyle{ n \in \omega, }[/math] [math]\displaystyle{ \boldsymbol{\Pi}^1_{2n+1} }[/math] and [math]\displaystyle{ \boldsymbol{\Sigma}^1_{2n+2} }[/math] have the prewellordering property.

Consequences

Reduction

If [math]\displaystyle{ \boldsymbol{\Gamma} }[/math] is an adequate pointclass with the prewellordering property, then it also has the reduction property: For any space [math]\displaystyle{ X \in \mathcal{F} }[/math] and any sets [math]\displaystyle{ A, B \subseteq X, }[/math] [math]\displaystyle{ A }[/math] and [math]\displaystyle{ B }[/math] both in [math]\displaystyle{ \boldsymbol{\Gamma}, }[/math] the union [math]\displaystyle{ A \cup B }[/math] may be partitioned into sets [math]\displaystyle{ A^*, B^*, }[/math] both in [math]\displaystyle{ \boldsymbol{\Gamma}, }[/math] such that [math]\displaystyle{ A^* \subseteq A }[/math] and [math]\displaystyle{ B^* \subseteq B. }[/math]

Separation

If [math]\displaystyle{ \boldsymbol{\Gamma} }[/math] is an adequate pointclass whose dual pointclass has the prewellordering property, then [math]\displaystyle{ \boldsymbol{\Gamma} }[/math] has the separation property: For any space [math]\displaystyle{ X \in \mathcal{F} }[/math] and any sets [math]\displaystyle{ A, B \subseteq X, }[/math] [math]\displaystyle{ A }[/math] and [math]\displaystyle{ B }[/math] disjoint sets both in [math]\displaystyle{ \boldsymbol{\Gamma}, }[/math] there is a set [math]\displaystyle{ C \subseteq X }[/math] such that both [math]\displaystyle{ C }[/math] and its complement [math]\displaystyle{ X \setminus C }[/math] are in [math]\displaystyle{ \boldsymbol{\Gamma}, }[/math] with [math]\displaystyle{ A \subseteq C }[/math] and [math]\displaystyle{ B \cap C = \varnothing. }[/math]

For example, [math]\displaystyle{ \boldsymbol{\Pi}^1_1 }[/math] has the prewellordering property, so [math]\displaystyle{ \boldsymbol{\Sigma}^1_1 }[/math] has the separation property. This means that if [math]\displaystyle{ A }[/math] and [math]\displaystyle{ B }[/math] are disjoint analytic subsets of some Polish space [math]\displaystyle{ X, }[/math] then there is a Borel subset [math]\displaystyle{ C }[/math] of [math]\displaystyle{ X }[/math] such that [math]\displaystyle{ C }[/math] includes [math]\displaystyle{ A }[/math] and is disjoint from [math]\displaystyle{ B. }[/math]

See also

  • Descriptive set theory – Subfield of mathematical logic
  • Graded poset – a graded poset is analogous to a prewellordering with a norm, replacing a map to the ordinals with a map to the natural numbers

References

  1. 1.0 1.1 1.2 Moschovakis 2006, p. 106.