Sinhc function
From HandWiki
In mathematics, the sinhc function appears frequently in papers about optical scattering,[1] Heisenberg spacetime[2] and hyperbolic geometry.[3][better source needed] For , it is defined as[4][5]

The sinhc function is the hyperbolic analogue of the sinc function, defined by . It is a solution of the following differential equation:



Properties
The first-order derivative is given by
The Taylor series expansion isThe Padé approximant is
In terms of other special functions
- , where is Kummer's confluent hypergeometric function.
- , where is the biconfluent Heun function.
- , where is a Whittaker function.
Gallery
See also
- Tanc function
- Tanhc function
- Sinhc integral
- Coshc function
References
- ↑ den Outer, P. N.; Lagendijk, Ad; Nieuwenhuizen, Th. M. (1993-06-01). "Location of objects in multiple-scattering media" (in en). Journal of the Optical Society of America A 10 (6): 1209. doi:10.1364/JOSAA.10.001209. ISSN 1084-7529. Bibcode: 1993JOSAA..10.1209D. https://opg.optica.org/abstract.cfm?URI=josaa-10-6-1209.
- ↑ Körpinar, Talat (2014). "New Characterizations for Minimizing Energy of Biharmonic Particles in Heisenberg Spacetime" (in en). International Journal of Theoretical Physics 53 (9): 3208–3218. doi:10.1007/s10773-014-2118-5. ISSN 0020-7748. Bibcode: 2014IJTP...53.3208K. http://link.springer.com/10.1007/s10773-014-2118-5.
- ↑ Nilgün Sönmez, A Trigonometric Proof of the Euler Theorem in Hyperbolic Geometry, International Mathematical Forum, 4, 2009, no. 38, 1877–1881
- ↑ ten Thije Boonkkamp, J. H. M.; van Dijk, J.; Liu, L.; Peerenboom, K. S. C. (2012). "Extension of the Complete Flux Scheme to Systems of Conservation Laws" (in en). Journal of Scientific Computing 53 (3): 552–568. doi:10.1007/s10915-012-9588-5. ISSN 0885-7474.
- ↑ Weisstein, Eric W.. "Sinhc Function" (in en). https://mathworld.wolfram.com/SinhcFunction.html.






