Tanc function

From HandWiki

In mathematics, the tanc function is defined for z0 as[1] tanc(z)=tan(z)z

Tanc 2D plot
Tanc'(z) 2D plot
Tanc integral 2D plot
Tanc integral 3D plot

Properties

The first-order derivative of the tanc function is given by

sec2(z)ztan(z)z2

The Taylor series expansion istancz(1+13z2+215z4+17315z6+622835z8+1382155925z10+218446081075z12+929569638512875z14+O(z16))which leads to the series expansion of the integral as0ztan(x)xdx=(z+19z3+275z5+172205z7+6225515z9+13821715175z11+2184479053975z13+9295699577693125z15+O(z17))The Padé approximant istanc(z)=(1751z2+1255z4269615z6+134459425z8)(1817z2+7255z449945z6+1765765z8)1

In terms of other special functions

  • tanc(z)=2iKummerM(1,2,2iz)(2z+π)KummerM(1,2,i(2z+π)), where KummerM(a,b,z) is Kummer's confluent hypergeometric function.
  • tanc(z)=2iHeunB(2,0,0,0,2iz)(2z+π)HeunB(2,0,0,0,2(i/2)(2z+π)), where HeunB(q,α,γ,δ,ϵ,z) is the biconfluent Heun function.
  • tanc(z)=WhittakerM(0,1/2,2iz)WhittakerM(0,1/2,i(2z+π))z, where WhittakerM(a,b,z) is a Whittaker function.
Tanc abs complex 3D
Tanc Im complex 3D plot
Tanc Re complex 3D plot

See also

References