Slepian function

From HandWiki
Short description: Mathematical function


Slepian functions are a class of spatio-spectrally concentrated functions[1][2] that form an orthogonal basis for bandlimited or spacelimited spaces.[3][4][5][6] That is, they are concentrated in space or time while spectrally bandlimited, or concentrated in spectral band while space- or time-limited. They are widely used as basis functions for constructive approximation[7] and in linear inverse problems,[8][9] and as apodization tapers or window functions[10] in quadratic problems[11] of spectral density estimation.[12][13]

Slepian function constructions exist in discrete (regular[14] and irregular[15]) and continuous[16][17][18] varieties, in one, two, and three dimensions,[19] in Cartesian and spherical geometry, on surfaces and in volumes,[20] on graphs,[21] and in scalar, vector,[22] and tensor forms.[23]

General setting and operator formalism

Without reference to any of these particularities,[24] let f be a square-integrable function of physical space, and let represent Fourier transformation, such that F=f and 1F=f. Let the operators and project onto the space of spacelimited functions, 𝒮R, and the space of bandlimited functions, 𝒮L, respectively, whereby R is an arbitrary nontrivial subregion of all of physical space, and L an arbitrary nontrivial subregion of spectral space. Thus, the operator acts to spacelimit, and the operator 1 acts to bandlimit the function f.

Slepian's quadratic spectral concentration problem aims to maximize the concentration of spectral power to a target region L, for a function that is spatially limited to a target region R. Conversely, Slepian's spatial concentration problem maximizes the spatial concentration to R of a function bandlimited to L. Using , for the inner product both in the space and the spectral domains, both problems are stated equivalently using Rayleigh quotients in the form

λ=1F,1F1F,1F=f,ff,f=maximum.

The equivalent spectral-domain and spatial-domain eigenvalue equations are

(1)(F)=λ(F) and (1)(f)=λ(f),

given that and 1 are each others' adjoints, and that and are self-adjoint and idempotent.

The Slepian functions are solutions to either of these types of equations with positive-definite kernels, that is, they are bandlimited functions G=F, concentrated to the spatial domain within R, or spacelimited functions of the form h=f, concentrated to the spectral domain within L.

Scalar Slepian functions in one dimension

(a) Slepian functions in the time domain. (b) Slepian functions in the frequency domain. Shown is the square of the absolute value of the Fourier transform of the Slepian functions shown in (a). (c) Concentration factors associated with the successive Slepian functions shown in (a). (d) Cumulative energy by summation the square of the Slepian functions shown in (a).

Let g(t) and its Fourier transform G(ω) be strictly bandlimited in angular frequency between [W,W]. Attempting to concentrate g(t) in the time domain, to be contained within the time interval [T,T], amounts to maximizing

λ=TTg2(t)dtg2(t)dt=maximum,

which is equivalent to solving either, in the frequency domain, the convolutional integral eigenvalue (Fredholm) equation

WWDT(ω,ω)G(ω)dω=λG(ω),DT(ω,ω)=sinT(ωω)π(ωω),|ω|W,

or the time- or space-domain version

TTDW(t,t)g(t)dt=λg(t),DW(t,t)=sinW(tt)π(tt)=(2π)1WWeiω(tt)dω,t.

Either of these can be transformed and rescaled to the dimensionless

11D(x,x)g(x)dx=λg(x),D(x,x)=sinTW(xx)π(xx).

The trace of the positive definite kernel is the sum of the infinite number of real and positive eigenvalues,

N=α=1λα=11D(x,x)dx=2TWπ,

that is, the area of the concentration domain in time-frequency space (a time-bandwidth product).

One-dimensional scalar Slepian functions or tapers[25] are the workhorse of the Thomson multitaper method of spectral density estimation.

Scalar Slepian functions in two Cartesian dimensions

Slepian functions concentrated to a cat-like spatial (top row; rank α and concentration eigenvalue λ) and a duck-like spectral domain (bottom row; shown is the square of the absolute value of the Fourier transform of the functions shown in the top row).

We use g(𝐱) and its Fourier transform G(𝐤) to denote a function that is strictly bandlimited to 𝒦, an arbitrary subregion of the spectral space of spatial wave vectors.[26] Seeking to concentrate g(𝐱) into a finite spatial region R2, of area A, we must find the unknown functions for which

λ=Rg2(𝐱)d𝐱g2(𝐱)d𝐱=maximum.

Maximizing this Rayleigh quotient requires solving the Fredholm integral equation

𝒦DR(𝐤,𝐤)G(𝐤)d𝐤=λG(𝐤),DR(𝐤,𝐤)=(2π)2Rei(𝐤𝐤)𝐱d𝐱,𝐤𝒦.

The corresponding problem in the spatial domain is

RD𝒦(𝐱,𝐱)g(𝐱)d𝐱=λg(𝐱),D𝒦(𝐱,𝐱)=(2π)2𝒦ei𝐤(𝐱𝐱)d𝐤,𝐱2.

Concentration to the disk-shaped spectral band 𝒦={𝐤:𝐤K} allows us to rewrite the spatial kernel as

D𝒦(𝐱,𝐱)=KJ1(K𝐱𝐱)2π𝐱𝐱,

with J1 a Bessel function of the first kind, from which we may derive that

N=α=1λα=RD𝒦(𝐱,𝐱)d𝐱=K2A4π,

in other words, again the area of the concentration domain in space-frequency space (a space-bandwidth product).

Scalar Slepian functions on the surface of a sphere

Spherical Slepian functions of spherical-harmonic bandwidth 18, and of spherical-harmonic order 0 (that is, only made of zonal spherical harmonics), either very well (top row) or very poorly (bottom row) concentrated, as indicated by the concentration ratio λ to the North-polar cap of opening angle 40 .

We denote g(r^) a function on the unit sphere Ω and its spherical harmonic transform coefficient glm at the degree l and order m, respectively,[24] and we consider bandlimitation to spherical harmonic degree L, that is, g𝒮L. Maximizing the quadratic energy ratio within the spatial subdomain RΩ via

λ=Rg2(r^)dΩΩg2(r^)dΩ=maximum

amounts in the spectral domain to solving the algebraic eigenvalue equation

l=0Lm=llDlm,lmglm=λglm,Dlm,lm=RYlm(r^)Ylm(r^)dΩ,

with Ylm the spherical harmonic at degree l and order m. The equivalent spatial-domain equation, RD(r^,r^)g(r^)dΩ=λg(r^),D(r^,r^)==l=0Lm=llYlm(r^)Ylm(r^)=l=0L(2l+14π)Pl(r^r^), is a homogeneous Fredholm integral equation of the second kind, with a finite-rank, symmetric, separable kernel.

The last equality is a consequence of the spherical harmonic addition theorem which involves Pl, the Legendre polynomial. The trace of this kernel is given by

N=α=1(L+1)2λα=RD(r^,r^)dΩ=l=0Lm=llDlm,lm=(L+1)2A4π,

that is, once again a space-bandwidth product, of the dimension of 𝒮L and the fractional area of R on the unit sphere Ω, namely A/(4π).

References

  1. Slepian, David (1983). "Some comments on Fourier analysis, uncertainty and modeling". SIAM Review 25 (3): 379–393. doi:10.1137/1025078. ISSN 0036-1445. http://epubs.siam.org/doi/10.1137/1025078. Retrieved 2025-07-03. 
  2. Simons, Frederik J. (2010). "Slepian Functions and Their Use in Signal Estimation and Spectral Analysis". Handbook of Geomathematics. Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 891–923. doi:10.1007/978-3-642-01546-5_30. ISBN 978-3-642-01545-8. 
  3. Daubechies, Ingrid (1992-06-01). Ten Lectures on Wavelets. Philadelphia (Pa.): SIAM. ISBN 0-89871-274-2. 
  4. Flandrin, Patrick (1999). Time-frequency/time Scale Analysis. San Diego: Academic Press. ISBN 978-0-12-259870-8. 
  5. Hogan, Jeffrey A.; Lakey, Joseph D. (2011-12-11). Duration and Bandwidth Limiting. Boston: Birkhäuser. ISBN 978-0-8176-8306-1. 
  6. Kennedy, Rodney A.; Sadeghi, Parastoo (2013-03-07). Hilbert Space Methods in Signal Processing. Cambridge: Cambridge University Press. ISBN 978-1-107-01003-1. 
  7. Michel, Volker (2013). "Spherical Slepian Functions". Lectures on Constructive Approximation. Applied and Numerical Harmonic Analysis. Boston: Birkhäuser Boston. pp. 239–245. doi:10.1007/978-0-8176-8403-7_8. ISBN 978-0-8176-8402-0. https://link.springer.com/10.1007/978-0-8176-8403-7_8. Retrieved 2025-06-25. 
  8. Simons, Frederik J.; Dahlen, F. A. (2006). "Spherical Slepian functions and the polar gap in geodesy". Geophysical Journal International 166 (3): 1039–1061. doi:10.1111/j.1365-246X.2006.03065.x. Bibcode2006GeoJI.166.1039S. https://academic.oup.com/gji/article-pdf/166/3/1039/6098905/166-3-1039.pdf. Retrieved 2025-06-25. 
  9. Michel, Volker; Simons, Frederik J (2017-12-01). "A general approach to regularizing inverse problems with regional data using Slepian wavelets". Inverse Problems 33 (12): 125016. doi:10.1088/1361-6420/aa9909. ISSN 0266-5611. Bibcode2017InvPr..33l5016M. 
  10. Harris, F.J. (1978). "On the use of windows for harmonic analysis with the discrete Fourier transform". Proceedings of the IEEE 66 (1): 51–83. doi:10.1109/PROC.1978.10837. ISSN 0018-9219. 
  11. Haykin, Simon S. (1991). Advances in Spectrum Analysis and Array Processing. Englewood, Cliffs, N.J: Prentice Hall. ISBN 978-0-13-007444-7. 
  12. Thomson, D.J. (1982). "Spectrum estimation and harmonic analysis". Proceedings of the IEEE 70 (9): 1055–1096. doi:10.1109/PROC.1982.12433. ISSN 0018-9219. 
  13. Dahlen, F. A.; Simons, Frederik J. (2008). "Spectral estimation on a sphere in geophysics and cosmology". Geophysical Journal International 174 (3): 774–807. doi:10.1111/j.1365-246X.2008.03854.x. Bibcode2008GeoJI.174..774D. https://academic.oup.com/gji/article-pdf/174/3/774/5889898/174-3-774.pdf. Retrieved 2025-06-25. 
  14. Slepian, D. (1978-05-06). "Prolate Spheroidal Wave Functions, Fourier Analysis, and Uncertainty-V: The Discrete Case". Bell System Technical Journal 57 (5): 1371–1430. doi:10.1002/j.1538-7305.1978.tb02104.x. https://ieeexplore.ieee.org/document/6771595. Retrieved 2025-07-03. 
  15. Bronez, T.P. (1988). "Spectral estimation of irregularly sampled multidimensional processes by generalized prolate spheroidal sequences". IEEE Transactions on Acoustics, Speech, and Signal Processing 36 (12): 1862–1873. doi:10.1109/29.9031. https://ieeexplore.ieee.org/document/9031. Retrieved 2025-07-03. 
  16. Slepian, D.; Pollak, H. O. (1961). "Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty - I". Bell System Technical Journal 40 (1): 43–63. doi:10.1002/j.1538-7305.1961.tb03976.x. https://ieeexplore.ieee.org/document/6773659. Retrieved 2025-07-03. 
  17. Landau, H. J.; Pollak, H. O. (1961). "Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty - II". Bell System Technical Journal 40 (1): 65–84. doi:10.1002/j.1538-7305.1961.tb03977.x. https://ieeexplore.ieee.org/document/6773660. Retrieved 2025-07-03. 
  18. Landau, H. J.; Pollak, H. O. (1962). "Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty-III: The Dimension of the Space of Essentially Time- and Band-Limited Signals". Bell System Technical Journal 41 (4): 1295–1336. doi:10.1002/j.1538-7305.1962.tb03279.x. https://ieeexplore.ieee.org/document/6773467. Retrieved 2025-07-03. 
  19. Slepian, David (1964). "Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty - IV: Extensions to Many Dimensions; Generalized Prolate Spheroidal Functions". Bell System Technical Journal 43 (6): 3009–3057. doi:10.1002/j.1538-7305.1964.tb01037.x. https://ieeexplore.ieee.org/document/6773515. Retrieved 2025-07-03. 
  20. Khalid, Zubair; Kennedy, Rodney A.; McEwen, Jason D. (2016). "Slepian spatial-spectral concentration on the ball". Applied and Computational Harmonic Analysis 40 (3): 470–504. doi:10.1016/j.acha.2015.03.008. 
  21. Van De Ville, Dimitri; Demesmaeker, Robin; Preti, Maria Giulia (2017). "When Slepian Meets Fiedler: Putting a Focus on the Graph Spectrum". IEEE Signal Processing Letters 24 (7): 1001–1004. doi:10.1109/LSP.2017.2704359. ISSN 1070-9908. Bibcode2017ISPL...24.1001V. 
  22. Simons, Frederik J.; Plattner, Alain (2015). "Scalar and Vector Slepian Functions, Spherical Signal Estimation and Spectral Analysis". Handbook of Geomathematics. Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 2563–2608. doi:10.1007/978-3-642-54551-1_30. ISBN 978-3-642-54550-4. https://link.springer.com/10.1007/978-3-642-54551-1_30. Retrieved 2025-06-25. 
  23. Michel, V.; Plattner, A.; Seibert, K. (2022). "A unified approach to scalar, vector, and tensor Slepian functions on the sphere and their construction by a commuting operator". Analysis and Applications 20 (5): 947–988. doi:10.1142/S0219530521500317. ISSN 0219-5305. 
  24. 24.0 24.1 Simons, Frederik J.; Dahlen, F. A.; Wieczorek, Mark A. (2006). "Spatiospectral Concentration on a Sphere". SIAM Review 48 (3): 504–536. doi:10.1137/S0036144504445765. ISSN 0036-1445. Bibcode2006SIAMR..48..504S. https://hal.science/hal-02458541/document. Retrieved 2025-06-25. 
  25. Press, William H. (2007-09-06). Numerical Recipes 3rd Edition. Cambridge: Cambridge University Press. ISBN 978-0-521-88068-8. 
  26. Simons, Frederik J.; Wang, Dong V. (2011). "Spatiospectral concentration in the Cartesian plane". GEM - International Journal on Geomathematics 2 (1): 1–36. doi:10.1007/s13137-011-0016-z. ISSN 1869-2672. Bibcode2011IJGm....2....1S.