Symplectization
In mathematics, the symplectization of a contact manifold is a symplectic manifold which naturally corresponds to it.
Definition
Let [math]\displaystyle{ (V,\xi) }[/math] be a contact manifold, and let [math]\displaystyle{ x \in V }[/math]. Consider the set
- [math]\displaystyle{ S_xV = \{\beta \in T^*_xV - \{ 0 \} \mid \ker \beta = \xi_x\} \subset T^*_xV }[/math]
of all nonzero 1-forms at [math]\displaystyle{ x }[/math], which have the contact plane [math]\displaystyle{ \xi_x }[/math] as their kernel. The union
- [math]\displaystyle{ SV = \bigcup_{x \in V}S_xV \subset T^*V }[/math]
is a symplectic submanifold of the cotangent bundle of [math]\displaystyle{ V }[/math], and thus possesses a natural symplectic structure.
The projection [math]\displaystyle{ \pi : SV \to V }[/math] supplies the symplectization with the structure of a principal bundle over [math]\displaystyle{ V }[/math] with structure group [math]\displaystyle{ \R^* \equiv \R - \{0\} }[/math].
The coorientable case
When the contact structure [math]\displaystyle{ \xi }[/math] is cooriented by means of a contact form [math]\displaystyle{ \alpha }[/math], there is another version of symplectization, in which only forms giving the same coorientation to [math]\displaystyle{ \xi }[/math] as [math]\displaystyle{ \alpha }[/math] are considered:
- [math]\displaystyle{ S^+_xV = \{\beta \in T^*_xV - \{0\} \,|\, \beta = \lambda\alpha,\,\lambda \gt 0\} \subset T^*_xV, }[/math]
- [math]\displaystyle{ S^+V = \bigcup_{x \in V}S^+_xV \subset T^*V. }[/math]
Note that [math]\displaystyle{ \xi }[/math] is coorientable if and only if the bundle [math]\displaystyle{ \pi : SV \to V }[/math] is trivial. Any section of this bundle is a coorienting form for the contact structure.
This article does not cite any external source. HandWiki requires at least one external source. See citing external sources. (2021) (Learn how and when to remove this template message) |
Original source: https://en.wikipedia.org/wiki/Symplectization.
Read more |