Titchmarsh convolution theorem

From HandWiki

The Titchmarsh convolution theorem describes the properties of the support of the convolution of two functions. It was proven by Edward Charles Titchmarsh in 1926.[1]

Titchmarsh convolution theorem

If [math]\displaystyle{ \varphi(t)\, }[/math] and [math]\displaystyle{ \psi(t) }[/math] are integrable functions, such that

[math]\displaystyle{ \varphi * \psi = \int_0^x \varphi(t)\psi(x-t)\,dt=0 }[/math]

almost everywhere in the interval [math]\displaystyle{ 0\lt x\lt \kappa\, }[/math], then there exist [math]\displaystyle{ \lambda\geq0 }[/math] and [math]\displaystyle{ \mu\geq0 }[/math] satisfying [math]\displaystyle{ \lambda+\mu\ge\kappa }[/math] such that [math]\displaystyle{ \varphi(t)=0\, }[/math] almost everywhere in [math]\displaystyle{ 0\lt t\lt \lambda }[/math] and [math]\displaystyle{ \psi(t)=0\, }[/math] almost everywhere in [math]\displaystyle{ 0\lt t\lt \mu. }[/math]

As a corollary, if the integral above is 0 for all [math]\displaystyle{ x\gt 0, }[/math] then either [math]\displaystyle{ \varphi\, }[/math] or [math]\displaystyle{ \psi }[/math] is almost everywhere 0 in the interval [math]\displaystyle{ [0,+\infty). }[/math] Thus the convolution of two functions on [math]\displaystyle{ [0,+\infty) }[/math] cannot be identically zero unless at least one of the two functions is identically zero.

As another corollary, if [math]\displaystyle{ \varphi * \psi (x) = 0 }[/math] for all [math]\displaystyle{ x\in [0, \kappa] }[/math] and one of the function [math]\displaystyle{ \varphi }[/math] or [math]\displaystyle{ \psi }[/math] is almost everywhere not null in this interval, then the other function must be null almost everywhere in [math]\displaystyle{ [0,\kappa] }[/math].

The theorem can be restated in the following form:

Let [math]\displaystyle{ \varphi, \psi\in L^1(\mathbb{R}) }[/math]. Then [math]\displaystyle{ \inf\operatorname{supp} \varphi\ast \psi=\inf\operatorname{supp} \varphi+\inf\operatorname{supp} \psi }[/math] if the left-hand side is finite. Similarly, [math]\displaystyle{ \sup\operatorname{supp} \varphi\ast\psi = \sup\operatorname{supp}\varphi + \sup\operatorname{supp} \psi }[/math] if the right-hand side is finite.

Above, [math]\displaystyle{ \operatorname{supp} }[/math] denotes the support of a function f (i.e., the closure of the complement of f-1(0)) and [math]\displaystyle{ \inf }[/math] and [math]\displaystyle{ \sup }[/math] denote the infimum and supremum. This theorem essentially states that the well-known inclusion [math]\displaystyle{ \operatorname{supp}\varphi\ast \psi \subset \operatorname{supp}\varphi+\operatorname{supp}\psi }[/math] is sharp at the boundary.

The higher-dimensional generalization in terms of the convex hull of the supports was proven by Jacques-Louis Lions in 1951:[2]

If [math]\displaystyle{ \varphi, \psi\in\mathcal{E}'(\mathbb{R}^n) }[/math], then [math]\displaystyle{ \operatorname{c.h.} \operatorname{supp} \varphi\ast \psi=\operatorname{c.h.} \operatorname{supp} \varphi+\operatorname{c.h.}\operatorname{supp} \psi }[/math]

Above, [math]\displaystyle{ \operatorname{c.h.} }[/math] denotes the convex hull of the set and [math]\displaystyle{ \mathcal{E}' (\mathbb{R}^n) }[/math] denotes the space of distributions with compact support.

The original proof by Titchmarsh uses complex-variable techniques, and is based on the Phragmén–Lindelöf principle, Jensen's inequality, Carleman's theorem, and Valiron's theorem. The theorem has since been proven several more times, typically using either real-variable[3][4][5] or complex-variable[6][7][8] methods. Gian-Carlo Rota has stated that no proof yet addresses the theorem's underlying combinatorial structure, which he believes is necessary for complete understanding.[9]

References

  1. Titchmarsh, E. C. (1926). "The Zeros of Certain Integral Functions" (in en). Proceedings of the London Mathematical Society s2-25 (1): 283–302. doi:10.1112/plms/s2-25.1.283. http://doi.wiley.com/10.1112/plms/s2-25.1.283. 
  2. Lions, Jacques-Louis (1951). "Supports de produits de composition". Comptes rendus 232 (17): 1530–1532. 
  3. Doss, Raouf (1988). "An elementary proof of Titchmarsh's convolution theorem". Proceedings of the American Mathematical Society 104 (1). https://www.ams.org/journals/proc/1988-104-01/S0002-9939-1988-0958063-5/S0002-9939-1988-0958063-5.pdf. 
  4. Kalisch, G. K. (1962-10-01). "A functional analysis proof of titchmarsh's theorem on convolution" (in en). Journal of Mathematical Analysis and Applications 5 (2): 176–183. doi:10.1016/S0022-247X(62)80002-X. ISSN 0022-247X. 
  5. Mikusiński, J. (1953). "A new proof of Titchmarsh's theorem on convolution" (in en). Studia Mathematica 13 (1): 56–58. doi:10.4064/sm-13-1-56-58. ISSN 0039-3223. 
  6. Crum, M. M. (1941). "On the resultant of two functions" (in en). The Quarterly Journal of Mathematics os-12 (1): 108–111. doi:10.1093/qmath/os-12.1.108. ISSN 0033-5606. https://academic.oup.com/qjmath/article-lookup/doi/10.1093/qmath/os-12.1.108. 
  7. Dufresnoy, Jacques (1947). "Sur le produit de composition de deux fonctions". Comptes rendus 225: 857–859. 
  8. Boas, Ralph P. (1954). Entire functions. New York: Academic Press. ISBN 0-12-108150-8. OCLC 847696. https://www.worldcat.org/oclc/847696. 
  9. Rota, Gian-Carlo (1998-06-01). "Ten Mathematics Problems I will never solve" (in de). Mitteilungen der Deutschen Mathematiker-Vereinigung 6 (2): 45–52. doi:10.1515/dmvm-1998-0215. ISSN 0942-5977. https://www.degruyter.com/document/doi/10.1515/dmvm-1998-0215/html.