List of nonlinear ordinary differential equations: Difference between revisions

From HandWiki
(update)
 
(No difference)

Latest revision as of 04:34, 16 March 2024

See also List of nonlinear partial differential equations and List of linear ordinary differential equations.

A–F

Name Order Equation Applications
Abel's differential equation of the first kind 1 [math]\displaystyle{ \frac{dy}{dx} = f_o(x) + f_1(x) y + f_2(x) y^2 + f_3(x) y^3 }[/math] Mathematics
Abel's differential equation of the second kind 1 [math]\displaystyle{ (g_o(x) + g_1(x) y)\frac{dy}{dx} = f_o(x) + f_1(x) y + f_2(x) y^2 + f_3(x) y^3 }[/math] Mathematics
Bellman's equation or Emden-Fowler's equation 2 [math]\displaystyle{ \frac{d^2y}{dx^2} = k x^a y^b }[/math] Mathematics
Bernoulli equation 1 [math]\displaystyle{ \frac{dy}{dx} + P(x) y = Q(x) y^n }[/math] Mathematics
Besant-Rayleigh-Plesset equation 2 [math]\displaystyle{ R\frac{d^2R}{dt^2} + \frac{3}{2}\left(\frac{dR}{dt}\right)^2 + \frac{4\nu}{R}\frac{dR}{dt} + \frac{2\gamma}{\rho R} + \frac{\Delta P(t)}{\rho} = 0 }[/math] Fluid dynamics
Blasius equation 3 [math]\displaystyle{ \frac{d^3y}{dx^3} + y \frac{d^2y}{dx^2} =0 }[/math] Blasius boundary layer
Chandrasekhar equation 2 [math]\displaystyle{ \frac{1}{\xi^2} \frac{d}{d\xi}\left(\xi^2 \frac{d\psi}{d\xi}\right)= e^{-\psi} }[/math] Astrophysics
Chandrasekhar's white dwarf equation 2 [math]\displaystyle{ \frac{1}{x^2} \frac{d}{dx}\left(x^2 \frac{dy}{dx}\right) + (y^2 - c)^{3/2}=0 }[/math] Astrophysics
Chrystal's equation 1 [math]\displaystyle{ \left(\frac{dy}{dx}\right)^2 + Ax \frac{dy}{dx} + By + Cx^2 =0 }[/math] Mathematics
Clairaut's equation 1 [math]\displaystyle{ y= x\frac{dy}{dx} + f\left(\frac{dy}{dx}\right) }[/math] Mathematics
D'Alembert's equation 1 [math]\displaystyle{ y = x f\left(\frac{dy}{dx}\right) + g\left(\frac{dy}{dx}\right) }[/math] Mathematics
Darboux equation 1 [math]\displaystyle{ \frac{dy}{dx} = \frac{P(x,y) + y R(x,y)}{Q(x,y) + xR(x,y)} }[/math] Mathematics
De Boer-Ludford equation 2 [math]\displaystyle{ \frac{d^2y}{dx^2} -xy =2y |y|^\alpha, \ \alpha\gt 0 }[/math] Plasma physics
Duffing equation 2 [math]\displaystyle{ \frac{d^2x}{dt^2} + \mu \frac{dx}{dt} + \alpha x + \beta x^3 = \gamma \cos \omega t }[/math] Oscillators
Emden equation 2 [math]\displaystyle{ \frac{1}{x^2} \frac{d}{dx}\left(x^2 \frac{dy}{dx}\right)= f(y) }[/math] Astrophysics
Euler's differential equation 1 [math]\displaystyle{ \frac{dy}{dx} + \frac{\sqrt{a_0+a_1y +a_2 y^2 + a_3 y^3 + a_4 y^4}}{\sqrt{a_0+a_1x +a_2 x^2 + a_3 x^3 + a_4 x^4}} = 0 }[/math] Mathematics
Falkner–Skan equation 3 [math]\displaystyle{ \frac{d^3y}{dx^3} + y \frac{d^2y}{dx^2} + \beta \left[1-\left(\frac{dy}{dx}\right)^2\right]=0 }[/math] Falkner–Skan boundary layer

G–K

Name Order Equation Applications
Ivey's equation 2 [math]\displaystyle{ \frac{d^2y}{dx^2} - \frac{1}{y} \left(\frac{dy}{dx}\right)^2 + \frac{2}{x}\frac{dy}{dx} + ky^2=0 }[/math]
Jacobi's differential equation 1 [math]\displaystyle{ \frac{dy}{dx} = \frac{Axy + By^2 + ax + by + c}{Ax^2 + Bxy +\alpha x +\beta y + \gamma} }[/math] Mathematics
Kidder equation 2 [math]\displaystyle{ \sqrt{1-\alpha y} \frac{d^2y}{dx^2} + 2x \frac{dy}{dx}=0,\ 0\lt \alpha\lt 1 }[/math] Flow through porous medium
Krogdahl equation 2 [math]\displaystyle{ \frac{d^2 Q}{d\tau^2} = -Q + \frac{2}{3}\lambda Q^2 - \frac{14}{27} \lambda^2 Q^3 + \mu(1-Q^2)\frac{dQ}{d\tau} + \frac{2}{3}\lambda(1-\lambda Q) \left(\frac{dQ}{d\tau}\right)^2 }[/math] Stellar pulsation

L–Q

Name Order Equation Applications
Lane–Emden equation 2 [math]\displaystyle{ \frac{1}{\xi^2} \frac{d}{d\xi} \left({\xi^2 \frac{d\theta}{d\xi}}\right) + \theta^n = 0 }[/math] Astrophysics
Langmuir equation 2 [math]\displaystyle{ 3y\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 + 4y \frac{dy}{dx} + y^2 =1 }[/math] Environmental Engineering
Langmuir-Blodgett equation 2 [math]\displaystyle{ \sqrt{y}\frac{d^2y}{dx^2}=e^x }[/math]
Langmuir-Boguslavski equation 2 [math]\displaystyle{ \frac{d}{dx}\left(x^n\frac{dy}{dx}\right) = \frac{1}{\sqrt{y}} }[/math]
Liñán's equation 2 [math]\displaystyle{ \frac{d^2y}{d\zeta^2} =(y^2-\zeta^2)e^{-\delta^{1/3}(y+\gamma \zeta)} }[/math] Combustion
Painlevé I transcendent 2 [math]\displaystyle{ \frac{d^2y}{dt^2} = 6 y^2 + t }[/math] Mathematics
Painlevé II transcendent 2 [math]\displaystyle{ \frac{d^2y}{dt^2} = 2 y^3 + ty + \alpha }[/math] Mathematics
Painlevé III transcendent 2 [math]\displaystyle{ ty\frac{d^2y}{dt^2} = t \left(\frac{dy}{dt} \right)^2-y\frac{dy}{dt} + \delta t + \beta y + \alpha y^3 + \gamma ty^4 }[/math] Mathematics
Painlevé IV transcendent 2 [math]\displaystyle{ y\frac{d^2y}{dt^2}=\tfrac12 \left(\frac{dy}{dt} \right)^2+\beta+2(t^2-\alpha)y^2+4ty^3+\tfrac32y^4 }[/math] Mathematics
Painlevé V transcendent 2 [math]\displaystyle{ \frac{d^2y}{dt^2}=\left(\frac{1}{2 y }+\frac{1}{ y -1}\right) \left( \frac{dy}{dt} \right)^2 -\frac{1}{t} \frac{dy}{dt}+\frac{( y -1)^2}{t^2}\left(\alpha y +\frac{\beta}{ y }\right) +\gamma\frac{ y }{t}+\delta\frac{ y ( y +1)}{ y -1} }[/math] Mathematics
Painlevé VI transcendent 2 [math]\displaystyle{ \frac{d^2y}{dt^2}=\frac{1}{2}\left(\frac{1}{y}+\frac{1}{y-1}+\frac{1}{y-t}\right)\left( \frac{dy}{dt} \right)^2-\left(\frac{1}{t}+\frac{1}{t-1}+\frac{1}{y-t}\right)\frac{dy}{dt} +\frac{y(y-1)(y-t)}{t^2(t-1)^2} \left(\alpha+\beta\frac{t}{y^2}+\gamma\frac{t-1}{(y-1)^2}+\delta\frac{t(t-1)}{(y-t)^2}\right) }[/math] Mathematics
Poisson-Boltzmann equation 2 [math]\displaystyle{ \frac{d^2y}{dx^2} + \frac{\alpha}{x} \frac{dy}{dx} = e^y }[/math] Statistical Physics

R–Z

Name Order Equation Applications
Rayleigh equation 2 [math]\displaystyle{ \frac{d^2y}{dx^2} + k \frac{dy}{dx} + m \left(\frac{dy}{dx}\right)^3 + n^2 y =0 }[/math] Hydrodynamic stability
Riccati equation 1 [math]\displaystyle{ \frac{dy}{dx} + Q(x) y + R(x) y^2 = P(x) }[/math] Mathematics
Stuart–Landau equation 1 [math]\displaystyle{ \frac{dA}{dt} = \gamma A - \alpha A |A|^2 }[/math] Hydrodynamic stability
Thomas–Fermi equation 2 [math]\displaystyle{ \frac{d^2y}{dx^2} = \frac{1}{\sqrt x}y^{3/2} }[/math] Quantum mechanics[1]
Van der Pol equation 2 [math]\displaystyle{ {d^2x \over dt^2}-\mu(1-x^2){dx \over dt}+x= 0 }[/math] Oscillators

References

  1. Davis, Harold Thayer. Introduction to nonlinear differential and integral equations. Courier Corporation, 1962.