D4 polytope

From HandWiki
Revision as of 21:24, 17 May 2023 by John Stpola (talk | contribs) (simplify)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

In 4-dimensional geometry, there are 7 uniform 4-polytopes with reflections of D4 symmetry, all are shared with higher symmetry constructions in the B4 or F4 symmetry families. there is also one half symmetry alternation, the snub 24-cell.

Visualizations

Each can be visualized as symmetric orthographic projections in Coxeter planes of the D4 Coxeter group, and other subgroups. The B4 coxeter planes are also displayed, while D4 polytopes only have half the symmetry. They can also be shown in perspective projections of Schlegel diagrams, centered on different cells.

D4 polytopes related to B4
index Name
Coxeter diagram
CDel nodes 10ru.pngCDel split2.pngCDel node c1.pngCDel 3.pngCDel node c2.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c2.png
CDel node c1.pngCDel 3.pngCDel node c2.pngCDel split1.pngCDel nodeab c3.png = CDel node c1.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 4.pngCDel node h0.png
Coxeter plane projections Schlegel diagrams Net
B4
[8]
D4, B3
[6]
D3, B2
[4]
Cube
centered
Tetrahedron
centered
1 demitesseract
(Same as 16-cell)
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png = h{4,3,3}
CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png = CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png = {3,3,4}
{3,31,1}
4-cube t3.svg 4-demicube t0 D4.svg 4-demicube t0 D3.svg Schlegel wireframe 16-cell.png 16-cell net.png
2 cantic tesseract
(Same as truncated 16-cell)
CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png = h2{4,3,3}
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes.png = CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png = t{3,3,4}
t{3,31,1}
4-cube t23.svg 4-demicube t01 D4.svg 4-demicube t01 D3.svg Schlegel half-solid truncated 16-cell.png Truncated hexadecachoron net.png
3 runcic tesseract
birectified 16-cell
(Same as rectified tesseract)
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png = h3{4,3,3}
CDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 11.png = CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node h0.png = r{4,3,3}
2r{3,31,1}
4-cube t1.svg 4-cube t1 B3.svg 4-demicube t02 D3.svg Schlegel half-solid rectified 8-cell.png Rectified tesseract net.png
4 runcicantic tesseract
bitruncated 16-cell
(Same as bitruncated tesseract)
CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png = h2,3{4,3,3}
CDel node.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes 11.png = CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node h0.png = 2t{4,3,3}
2t{3,31,1}
4-cube t12.svg 4-cube t12 B3.svg 4-demicube t012 D3.svg Schlegel half-solid bitruncated 16-cell.png Tesseractihexadecachoron net.png
D4 polytopes related to F4 and B4
index Name
Coxeter diagram
CDel nodeab c1.pngCDel split2.pngCDel node c2.pngCDel 3.pngCDel node c1.png = CDel node c1.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c1.pngCDel 4.pngCDel node h0.png = CDel node c2.pngCDel 3.pngCDel node c1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
Coxeter plane projections Schlegel diagrams Parallel
3D
Net
F4
[12]
B4
[8]
D4, B3
[6]
D3, B2
[2]
Cube
centered
Tetrahedron
centered
D4
[6]
5 rectified 16-cell
(Same as 24-cell)
CDel nodes.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.png = CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel splitsplit1.pngCDel branch3.pngCDel node.png = CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
{31,1,1} = r{3,3,4} = {3,4,3}
24-cell t0 F4.svg 24-cell t0 B4.svg 4-demicube t1 D4.svg 24-cell t3 B2.svg Schlegel wireframe 24-cell.png 24-cell net.png
6 cantellated 16-cell
(Same as rectified 24-cell)
CDel nodes 11.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.png = CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel node.pngCDel splitsplit1.pngCDel branch3 11.pngCDel node 1.png = CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
r{31,1,1} = rr{3,3,4} = r{3,4,3}
24-cell t1 F4.svg 4-cube t02.svg 24-cell t2 B3.svg 24-cell t2 B2.svg Schlegel half-solid cantellated 16-cell.png Rectified icositetrachoron net.png
7 cantitruncated 16-cell
(Same as truncated 24-cell)
CDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.png = CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel splitsplit1.pngCDel branch3 11.pngCDel node 1.png = CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
t{31,1,1} = tr{3,31,1} = tr{3,3,4} = t{3,4,3}
24-cell t01 F4.svg 4-cube t012.svg 24-cell t23 B3.svg 4-demicube t123 D3.svg Schlegel half-solid truncated 24-cell.png Truncated icositetrachoron net.png
8 (Same as snub 24-cell)
CDel nodes hh.pngCDel split2.pngCDel node h.pngCDel 3.pngCDel node h.png = CDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
CDel node h.pngCDel splitsplit1.pngCDel branch3 hh.pngCDel node h.png = CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
s{31,1,1} = sr{3,31,1} = sr{3,3,4} = s{3,4,3}
24-cell h01 F4.svg 24-cell h01 B4.svg 24-cell h01 B3.svg 24-cell h01 B2.svg Ortho solid 969-uniform polychoron 343-snub.png Snub disicositetrachoron net.png

Coordinates

The base point can generate the coordinates of the polytope by taking all coordinate permutations and sign combinations. The edges' length will be 2. Some polytopes have two possible generator points. Points are prefixed by Even to imply only an even count of sign permutations should be included.

# Name(s) Base point Johnson Coxeter diagrams
D4 B4 F4
1 4 Even (1,1,1,1) demitesseract CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
3 h3γ4 Even (1,1,1,3) runcic tesseract CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
2 h2γ4 Even (1,1,3,3) cantic tesseract CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
4 h2,3γ4 Even (1,3,3,3) runcicantic tesseract CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
1 t3γ4 = β4 (0,0,0,2) 16-cell CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
5 t2γ4 = t1β4 (0,0,2,2) rectified 16-cell CDel nodes.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
2 t2,3γ4 = t0,1β4 (0,0,2,4) truncated 16-cell CDel nodes.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
6 t1γ4 = t2β4 (0,2,2,2) cantellated 16-cell CDel nodes 11.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
9 t1,3γ4 = t0,2β4 (0,2,2,4) cantellated 16-cell CDel nodes 11.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
7 t1,2,3γ = t0,1,2β4 (0,2,4,6) cantitruncated 16-cell CDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
8 s{31,1,1} (0,1,φ,φ+1)/2 Snub 24-cell CDel nodes hh.pngCDel split2.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png

References

  • J.H. Conway and M.J.T. Guy: Four-Dimensional Archimedean Polytopes, Proceedings of the Colloquium on Convexity at Copenhagen, page 38 und 39, 1965
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 26)
  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 Wiley::Kaleidoscopes: Selected Writings of H.S.M. Coxeter
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
    • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966

External links

  • Klitzing, Richard. "4D uniform 4-polytopes". https://bendwavy.org/klitzing/dimensions/polychora.htm. 
  • Uniform, convex polytopes in four dimensions:, Marco Möller (in German)
    • Möller, Marco (2004). Vierdimensionale Archimedische Polytope (PDF) (Doctoral dissertation) (in Deutsch). University of Hamburg.
  • Uniform Polytopes in Four Dimensions, George Olshevsky.