Rectified 24-cell

From HandWiki
Rectified 24-cell

Schlegel diagram
8 of 24 cuboctahedral cells shown
Type Uniform 4-polytope
Schläfli symbols r{3,4,3} = {34,3}
rr{3,3,4}=r{33,4}
r{31,1,1} = r{333}
Coxeter diagrams

or
Cells 48 24 3.4.3.4
24 4.4.4
Faces 240 96 {3}
144 {4}
Edges 288
Vertices 96
Vertex figure 50px50px
Triangular prism
Symmetry groups F4 [3,4,3], order 1152
B4 [3,3,4], order 384
D4 [31,1,1], order 192
Properties convex, edge-transitive
Uniform index 22 23 24
Net

In geometry, the rectified 24-cell or rectified icositetrachoron is a uniform 4-dimensional polytope (or uniform 4-polytope), which is bounded by 48 cells: 24 cubes, and 24 cuboctahedra. It can be obtained by rectification of the 24-cell, reducing its octahedral cells to cubes and cuboctahedra.[1]

E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as tC24.

It can also be considered a cantellated 16-cell with the lower symmetries B4 = [3,3,4]. B4 would lead to a bicoloring of the cuboctahedral cells into 8 and 16 each. It is also called a runcicantellated demitesseract in a D4 symmetry, giving 3 colors of cells, 8 for each.

Construction

The rectified 24-cell can be derived from the 24-cell by the process of rectification: the 24-cell is truncated at the midpoints. The vertices become cubes, while the octahedra become cuboctahedra.

Cartesian coordinates

A rectified 24-cell having an edge length of 2 has vertices given by all permutations and sign permutations of the following Cartesian coordinates:

(0,1,1,2) [4!/2!×23 = 96 vertices]

The dual configuration with edge length 2 has all coordinate and sign permutations of:

(0,2,2,2) [4×23 = 32 vertices]
(1,1,1,3) [4×24 = 64 vertices]

Images

Stereographic projection

Center of stereographic projection
with 96 triangular faces blue

Symmetry constructions

There are three different symmetry constructions of this polytope. The lowest D4 construction can be doubled into C4 by adding a mirror that maps the bifurcating nodes onto each other. D4 can be mapped up to F4 symmetry by adding two mirror that map all three end nodes together.

The vertex figure is a triangular prism, containing two cubes and three cuboctahedra. The three symmetries can be seen with 3 colored cuboctahedra in the lowest D4 construction, and two colors (1:2 ratio) in C4, and all identical cuboctahedra in F4.

Coxeter group F4 = [3,4,3] C4 = [4,3,3] D4 = [3,31,1]
Order 1152 384 192
Full
symmetry
group
[3,4,3] [4,3,3] <[3,31,1]> = [4,3,3]
[3[31,1,1]] = [3,4,3]
Coxeter diagram
Facets 3:
2:
2,2:
2:
1,1,1:
2:
Vertex figure

Alternate names

  • Rectified 24-cell, Cantellated 16-cell (Norman Johnson)
  • Rectified icositetrachoron (Acronym rico) (George Olshevsky, Jonathan Bowers)
    • Cantellated hexadecachoron
  • Disicositetrachoron
  • Amboicositetrachoron (Neil Sloane & John Horton Conway)

The convex hull of the rectified 24-cell and its dual (assuming that they are congruent) is a nonuniform polychoron composed of 192 cells: 48 cubes, 144 square antiprisms, and 192 vertices. Its vertex figure is a triangular bifrustum.

The rectified 24-cell can also be derived as a cantellated 16-cell:

Citations

  1. Coxeter 1973, p. 154, §8.4.

References

Fundamental convex regular and uniform polytopes in dimensions 2–10
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform 4-polytope 5-cell 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds