Engineering:List of nuclear power systems in space
From HandWiki
Short description: None
This list of nuclear power systems in space includes Script error: No such module "Table row counter". nuclear power systems that were flown to space, or at least launched in an attempt to reach space. Such used nuclear power systems include:
- radioisotope heater units (RHU) (usually produce heat by spontaneous decay of 238Pu)
- radioisotope thermoelectric generators (RTG) (usually produce heat by spontaneous decay of 238Pu and convert it to electricity using a thermoelectric generator)
- miniaturized fission reactors (usually produce heat by controlled fission of highly enriched 235U and convert it to electricity using a thermionic converter)
Systems never launched are not included here, see Nuclear power in space.
Initial total power is provided as either electrical power (We) or thermal power (Wt), depending on the intended application.
Nation | Mission | Launched | Fate / location | Technology | Nuclear fuel | Power (nominal) | Ref |
---|---|---|---|---|---|---|---|
USA | Transit-4A | 1961 | Earth orbit | RTG SNAP-3B | 238Pu | 2.7 We | [1] |
USA | Transit-4B | 1961 | Earth orbit | RTG SNAP-3B | 238Pu | 2.7 We | [1] |
USA | Transit 5BN-1 | 1963 | Earth orbit | RTG SNAP-9A | 238Pu | 25.2 We | [1] |
USA | Transit 5BN-2 | 1963 | Earth orbit | RTG SNAP-9A | 238Pu | 26.8 We | [1] |
USA | Transit 5BN-3 | 1964 | Failed to reach orbit, burned up in atmosphere. | RTG SNAP-9A | 238Pu | 25 We | [2] |
USA | SNAPSHOT | 1965 | Low graveyard orbit in 1300 km height | fission reactor SNAP-10A | 235U (uranium-zirconium hydride) | 500 We | [1] |
USA | Nimbus 3 (Nimbus-B2) | 1969-04-14 | Earth re-entry 1972 | RTG SNAP-19B (2) | 238Pu | 56 We | [1] |
USA | Nimbus IV | 1970 | Earth orbit | RTG SNAP-19 | [3] | ||
USA | Nimbus V | 1972 | Earth orbit | RTG SNAP-19 | [3] | ||
USA | Nimbus VI | 1975 | Earth orbit, damaged | RTG SNAP-19 | [3] | ||
USA | Nimbus VII | 1978 | Earth orbit, damaged | RTG SNAP-19 | [3] | ||
USA | Apollo 11 | 1969 | RHU (2) | 30 Wt | [1] | ||
USA | Apollo 12 ALSEP | 1969 | Lunar surface (Ocean of Storms)[4] | SNAP-27 | 238Pu | 73.6 We | [1] |
USA | Apollo 13 ALSEP | 1970 | Earth re-entry (Pacific Ocean, Tonga Trench) | RTG SNAP-27 | 238Pu | 73 We | [1] |
USA | Apollo 14 ALSEP | 1971 | Lunar surface (Fra Mauro) | RTG SNAP-27 | 238Pu | 72.5 We | [1] |
USA | Apollo 15 ALSEP | 1971 | Lunar surface (Hadley–Apennine) | RTG SNAP-27 | 238Pu | 74.7 We | [1] |
USA | Pioneer 10 | 1972 | Ejected from Solar System | RTG SNAP-19 (4) + RHU (12) | 238Pu | 162.8 We + 12 Wt | [1] |
USA | Apollo 16 ALSEP | 1972 | Lunar surface (Descartes Highlands) | RTG SNAP-27 | 238Pu | 70.9 We | [1] |
USA | TRAID-01-1X | 1972 | Earth orbit | RTG SNAP-19 | 238Pu | 35.6 We | [1] |
USA | Apollo 17 ALSEP | 1972 | Lunar surface (Taurus–Littrow) | RTG SNAP-27 | 238Pu | 75.4 We | [1] |
USA | Pioneer 11 | 1973 | Ejected from Solar System | RTG SNAP-19 (4) + RHU (12) | 238Pu | 159.6 We + 12 Wt | [1] |
USA | Viking 1 | 1976 | Mars surface (Chryse Planitia) | lander modified RTG SNAP-19 (2) | 238Pu | 84.6 We | [1] |
USA | Viking 2 | 1976 | Mars surface (Utopia Planitia) | lander modified RTG SNAP-19 (2) | 238Pu | 86.2 We | [1] |
USA | LES-8 | 1976 | Near geostationary orbit | MHW-RTG (2) | 238Pu | 307.4 We | [1] |
USA | LES-9 | 1976 | Near geostationary orbit | MHW-RTG (2) | 238Pu | 308.4 We | [1] |
USA | Voyager 1 | 1977 | Ejected from Solar System | MHW-RTG (3) + RHU(9) | 238Pu | 477.6 We + 9 Wt | [1] |
USA | Voyager 2 | 1977 | Ejected from Solar System | MHW-RTG (3) + RHU(9) | 238Pu | 470.1 We + 9 Wt | [1] |
USA | Mars 2020/Perseverance | 2020 | Mars surface | MMRTG | 238Pu | 110 We | [5] |
USA | Galileo | 1989 | Jupiter atmospheric entry | GPHS-RTG (2) | 576.8 We | [1] | |
USA | Ulysses | 1990 | Heliocentric orbit | GPHS-RTG | 283 We | [1] | |
USA | Cassini | 1997 | Burned-up in Saturn's Atmosphere | GPHS-RTG (3) | 238Pu | 887 We | |
USA | New Horizons | 2006 | Pluto and beyond | GPHS-RTG (1) | 238Pu | 249.6 We | |
USA | MSL/Curiosity rover | 2011 | Mars surface | MMRTG | 238Pu | 113 We | |
Soviet Union | Kosmos 84 | 1965 | Earth orbit | Orion-1 RTG | 210Po | [3][6] | |
Soviet Union | Kosmos 90 | 1965 | Earth orbit | Orion-1 RTG | 210Po | [3][6] | |
Soviet Union | Kosmos 198 (RORSAT) | 1967-12-27 | Earth orbit | Fission reactor BES-5 ?? | 235U | [3][7] | |
Soviet Union | Kosmos 209 (RORSAT) | 1968-03-22 | Earth orbit | Fission reactor BES-5 ?? | 235U | [3][7] | |
Soviet Union | Kosmos 305 (Moon) | 1969-10-22 | Failed to leave Earth orbit towards the Moon, burned up in atmosphere 2 days after launch | ?? | ?? | ?? | [3][8][9][10] |
Soviet Union | Kosmos 367 (RORSAT) | 1970-10-03 | Earth orbit, 579 mile altitude | Fission reactor BES-5 ?? | 235U | 2 kWe | [3][7][11] |
Soviet Union | Kosmos 402 (RORSAT) | 1971 | Earth orbit | Fission reactor BES-5 ?? | 235U | 2 kWe | [3][7] |
Soviet Union | Kosmos 469 (RORSAT) | 1971 | High orbit | Fission reactor BES-5 (officially confirmed) | 235U | 2 kWe | [12] |
Soviet Union | Kosmos 516 | 1972 | High orbited 1972 | Fission reactor BES-5 | 235U | 2 kWe | [12] |
Soviet Union | RORSAT | 1973 | Launch failure over Pacific Ocean, near Japan | Fission reactor BES-5 | 235U | 2 kWe | [12] |
Soviet Union | Kosmos 626 | 1973 | Earth orbit | Fission reactor BES-5 | 235U | 2 kWe | [12] |
Soviet Union | Kosmos 651 | 1974 | BES-5 | 235U | 2 kWe | [12] | |
Soviet Union | Kosmos 654 | 1974 | BES-5 | 235U | 2 kWe | [12] | |
Soviet Union | Kosmos 723 | 1975 | BES-5 | 235U | 2 kWe | [12] | |
Soviet Union | Kosmos 724 | 1975 | BES-5 | 235U | 2 kWe | [12] | |
Soviet Union | Kosmos 785 | 1975 | failed after reaching orbit | BES-5 | 235U | 2 kWe | [12] |
Soviet Union | Kosmos 860 | 1976 | BES-5 | 235U | 2 kWe | [12] | |
Soviet Union | Kosmos 861 | 1976 | BES-5 | 235U | 2 kWe | [12] | |
Soviet Union | Kosmos 952 | 1977 | BES-5 | 235U | 2 kWe | [12] | |
Soviet Union | Kosmos 954 | 1977 | Exploded on re-entry 1978 (over Canada) | BES-5 | 235U | 2 kWe | [12] |
Soviet Union | Kosmos 1176 | 1980 | 11788/11971 Earth orbit 870–970 km | BES-5 | 235U | 2 kWe | [12] |
Soviet Union | Kosmos 1249 | 1981 | BES-5 | 235U | 2 kWe | [12] | |
Soviet Union | Kosmos 1266 | 1981 | BES-5 | 235U | 2 kWe | [12] | |
Soviet Union | Kosmos 1299 | 1981 | BES-5 | 235U | 2 kWe | [12] | |
Soviet Union | Kosmos 1402 | 1982 | Earth re-entry 1983 (South Atlantic) | BES-5 | 235U | 2 kWe | [12] |
Soviet Union | Kosmos 1372 | 1982 | BES-5 | 235U | 2 kWe | [12] | |
Soviet Union | Kosmos 1365 | 1982 | BES-5 | 235U | 2 kWe | [12] | |
Soviet Union | Kosmos 1412 | 1982 | BES-5 | 235U | 2 kWe | [12] | |
Soviet Union | Kosmos 1461 | 1983 | Earth orbit, exploded | BES-5 | 235U | 2 kWe | [3] |
Soviet Union | Kosmos 1597 | 1984 | BES-5 | 235U | 2 kWe | [12] | |
Soviet Union | Kosmos 1607 | 1984 | High orbited 1985 | BES-5 | 235U | 2 kWe | [12] |
Soviet Union | Kosmos 1670 | 1985 | High orbited 1985 | BES-5 | 235U | 2 kWe | [12] |
Soviet Union | Kosmos 1677 | 1985 | High orbited 1985 | BES-5 | 235U | 2 kWe | [12] |
Soviet Union | Kosmos 1736 | 1986 | High orbited 1986 | BES-5 | 235U | 2 kWe | [12] |
Soviet Union | Kosmos 1771 | 1986 | High orbited 1986 | BES-5 | 235U | 2 kWe | [12] |
Soviet Union | Kosmos 1900 | 1987 | Earth orbit, 454 mile altitude | BES-5 | 235U | 2 kWe | [12][11] |
Soviet Union | Kosmos 1860 | 1987 | Fission reactor BES-5 | 235U | 2 kWe | [12] | |
Soviet Union | Kosmos 1932 | 1988 | Earth orbit 800–900 km | fission reactor BES-5 | 235U | 2 kWe | [12] |
Soviet Union | Kosmos 1682 | 1985 | High orbited 1986 | fission reactor BES-5 | 235U | 2 kWe | [12] |
Soviet Union | Kosmos 1818 (RORSAT) | 1987 | Destroyed in high Earth orbit | fission reactor Topaz-I | 235U | 5 kWe | [13] |
Soviet Union | Kosmos 1867 (RORSAT) | 1987 | Parked in high Earth orbit | fission reactor Topaz-I | 235U | 5 kWe | [14] |
Soviet Union | Lunokhod 201 | 1969-02-19 | Rocket exploded at launch, radioactive material from RHU spread over Russia | RHU | 210Po | [15] | |
Soviet Union | Lunokhod 1 | 1970 | Lunar surface | RHU | 210Po | [15] | |
Soviet Union | Lunokhod 2 | 1973 | Lunar surface | RHU | 210Po | [15] | |
Russia | Mars 96 | 1996 | Launch failure, entered Pacific Ocean | RHU (4) | 238Pu | [15] | |
China | Chang'e 3 and Yutu | 2013 | Lunar surface | several RHU's, RTG (??) (some electricity provided by solar panels) | 238Pu | [16] | |
India | Chandrayaan-3 | 2023 | Lunar orbit | RHU | 241Am | 2 Wt | [18] |
See also
- Outer Space Treaty
- List of high-altitude nuclear explosions
- Nuclear power in space
- List of artificial radiation belts
- Category:Nuclear-powered robots
References
- ↑ 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.22 1.23 "Atomic Power in Space II: A History 2015". Idaho National Laboratory. September 2015. https://www.inl.gov/wp-content/uploads/2014/10/AtomicPowerInSpaceII-AHistory_2015_Appendices-References1.pdf. Retrieved 13 June 2018.
- ↑ "Transit". Encyclopedia Astronautica. Archived from the original on 24 January 2013. https://web.archive.org/web/20130124081854/http://www.astronautix.com/project/transit.htm. Retrieved 2013-05-07.
- ↑ 3.00 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.10 3.11 Hagen, Regina (November 8, 1998). "Nuclear Powered Space Missions - Past and Future". http://www.space4peace.org/ianus/npsm3.htm. Retrieved 13 June 2018.
- ↑ David M. Harland (2011). Apollo 12 - On the Ocean of Storms. Springer Science & Business Media. p. 269. ISBN 978-1-4419-7607-9. https://books.google.com/books?id=vgrGPWSy4PgC&pg=PA269.
- ↑ mars.nasa.gov. "Electrical Power" (in en). https://mars.nasa.gov/mars2020/spacecraft/rover/electrical-power/.
- ↑ 6.0 6.1 Bennett, Gary L. (August 6, 1989). "A LOOK AT THE SOVIET SPACE NUCLEAR POWER PROGRAM". International Forum on Energy Engineering (NASA Propulsion, Power and Energy Division) IECEC-89. https://fas.org/nuke/space/sovspace.pdf. Retrieved 25 June 2018.
- ↑ 7.0 7.1 7.2 7.3 Sven Grahn. "The US-A program (Radar Ocean Reconnaissance Satellites)". http://www.svengrahn.pp.se/trackind/RORSAT/RORSAT.html. Retrieved 2020-05-12.
- ↑ Encyclopedia Astronautica article on the US-A RORSAT programme.
- ↑ "USSR - Luna Programme". http://www.zarya.info/Diaries/Luna/Luna.php.
- ↑ "NASA - NSSDCA - Spacecraft - Details". https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1969-092A.
- ↑ 11.0 11.1 "Top 10 Space Age Radiation Incidents". 20 January 2012. https://listverse.com/2012/01/20/top-10-space-age-radiation-incidents/amp/.
- ↑ 12.00 12.01 12.02 12.03 12.04 12.05 12.06 12.07 12.08 12.09 12.10 12.11 12.12 12.13 12.14 12.15 12.16 12.17 12.18 12.19 12.20 12.21 12.22 12.23 12.24 12.25 12.26 12.27 12.28 12.29 12.30 "US-A". Mark Wade. 14 September 2007. http://www.astronautix.com/craft/usa.htm. Retrieved 13 June 2018.
- ↑ "Old Russian Nuclear Satellite Returns". http://www.spacedaily.com/reports/Old_Russian_Nuclear_Satellite_Returns_999.html. Retrieved 2016-02-23.
- ↑ Lardier, Christian; Barensky, Stefan (March 27, 2018). The Proton Launcher: History and Developments. Wiley-ISTE. ISBN 978-1786301765.
- ↑ 15.0 15.1 15.2 15.3 Karacalıoğlu, Göktuğ (January 6, 2014). "Energy Resources for Space Missions". Space Safety Magazine. http://www.spacesafetymagazine.com/2014/01/16/energy-resources-space-missions/. Retrieved January 18, 2014.
- ↑ SUN, ZeZhou; JIA, Yang; ZHANG, He (November 2013). "Technological advancements and promotion roles of Chang'e-3 lunar probe mission" (PDF). Science China 56 (11): 2702–2708. doi:10.1007/s11431-013-5377-0. Bibcode: 2013ScChE..56.2702S. Archived from the original on 29 March 2014. https://web.archive.org/web/20140329104235/http://tech.scichina.com:8082/sciEe/EN/article/downloadArticleFile.do?attachType=PDF&id=512308. Retrieved 25 December 2013.
- ↑ "Chang'e-3 - Satellite Missions". ESA. https://earth.esa.int/web/eoportal/satellite-missions/c-missions/chang-e-3. Retrieved 12 June 2018.
- ↑ "Nuclear energy keeps Chandrayaan-3 propulsion module going". The Times of India. 2023-10-31. ISSN 0971-8257. https://timesofindia.indiatimes.com/home/science/nuclear-energy-keeps-chandrayaan-3-propulsion-module-going/articleshow/104834737.cms?from=mdr.
Original source: https://en.wikipedia.org/wiki/List of nuclear power systems in space.
Read more |