Chemistry:Phosphidosilicates
The phosphidosilicates or phosphosilicides are inorganic compounds containing silicon bonded to phosphorus and one or more other kinds of elements. In the phosphosilicates each silicon atom is surrounded by four phosphorus atoms in a tetrahedron. The triphosphosilicates have a SiP3 unit, that can be a planar triangle like carbonate CO3. The phosphorus atoms can be shared to form different patterns e.g. [Si2P6]10− which forms pairs, and [Si3P7]3− which contains two-dimensional double layer sheets.[1] [SiP4]8− with isolated tetrahedra, and [SiP2]2− with a three dimensional network with shared tetrahedron corners.[2] SiP clusters can be joined, not only by sharing a P atom, but also by way of a P-P bond. This does not happen with nitridosilicates or plain silicates. The phosphidosilicates can be considered as a subclass of the pnictogenidosilicates, where P can be substituted by N (nitridosilicates), As, or Sb. Also Silicon can be substituted to form other series of compounds by replacement with other +4 oxidation state atoms like germanium, tin, titanium or even tantalum.
List
formula | name | crystal
system |
space
group |
unit cell Å | form | MW | density | properties | references |
---|---|---|---|---|---|---|---|---|---|
Li2SiP2 | tetragonal | I41/acd | a=12.111 Å, c=18.658 Å, Z=32 V=2732.6 | 4 SiP4 tetrahedra are linked together to form a supertetrahedron. Supertetrahedrons are linked together by corner sharing. | 103.91 | 2.02 | [2][3] | ||
LiSi2P3 | I41/a | a=18.4757 Å, c=35.0982 Å, Z=100 | Interpenetrating networks of bridged supertetrahedra | [3] | |||||
Li3Si3P7 | monoclinic | P21/m | a = 6.3356 Å, b = 7.2198 Å, c = 10.6176 Å, β = 102.941°, Z = 2 | grey | [1] | ||||
Li5SiP3 | Cubic | Fm3m | a=5.84 Z=1.33 | SiP4 tetrahedra, but some Si replace by Li | [4] | ||||
Li10Si2P6 | P21/n | a = 7.2051 Å, b = 6.5808 Å, c = 11.6405 Å, β = 90.580°, Z = 4 | contains Si2P6 units with two Si atoms linked by two P atoms | also known by Li5SiP3 | [1] | ||||
Li8SiP4 | lithium orthophosphidosilicate | cubic | Pa3 | a=11.6784 Z=8 V=1592.76 | 207.49 | 1.73 | orange red | [2] | |
Li14SiP6 | Cubic | Fm3m | a=5.9393 Z=4 | SiP4 tetrahedra, but some Si replace by Li | 1.644 | [5] | |||
Na19Si13P25 | triclinic | P1 | a =13.3550 Å, b =15.3909 Å, c =15.4609 Å, α =118.05°, β =111.71°, γ =93.05°, Z =2 | T3 supertetrahedra | sodium ion conductor | [6] | |||
Na23Si19P33 | monoclinic | C2/c | a =28.4985 Å, b =16.3175 Å, c = 13.8732 Å, β =102.35°, Z =4 | solely T3 supertetrahedra | sodium ion conductor | [6] | |||
Na23Si28P45 | monoclinic | P21/c | a =19.1630 Å, b =23.4038 Å, c = 19.0220 Å, β =104.30°, Z =4 | T3 and T4 supertetrahedra | sodium ion conductor | [6] | |||
Na23Si37P57 | monoclinic | C2/c | a =34.1017 Å, b =16.5140 Å, c = 19.5764 Å, β =111.53°, Z =4 | solely T4 supertetrahedra | sodium ion conductor | [6] | |||
LT-NaSi2P3 | tetragonal | I41/a | a =19.5431 Å, c = 34.5317 Å, Z =100 | fused T4 and T5 supertetrahedra | sodium ion conductor | [6] | |||
HT-NaSi2P3 | tetragonal | I41/acd | a =20.8976 Å, c = 40.081 Å, Z =128 | solely fused T5 supertetrahedra | sodium ion conductor | [6] | |||
Na2SiP2 | disodium diphosphidosilicate | Tetrahedral | Pccn | a = 12.7929 Å, b = 22.3109 Å, c = 6.0522 Å and Z = 16 | edge‐shared SiP4 tetrahedra with 1 width chains | dark red 0.43 eV | [7] | ||
Na5SiP3 | monoclinic | P21/c | Z=4 a= 7.352 Å, b= 7.957, Å c= 13.164 Å, α=90.757° | 2.06 | also known by Na10Si2P6 band gap 1.292 eV | [8][9] | |||
Na3K2SiP3 | trisodium dipotassium triphosphidosilicate | Orthorhombic | Pnma | a=14.580 b=4.750 c= 13.020 V=901.7 Z=4 | SiP3 triangles | [10] | |||
Na4Ca2SiP4 | hexagonal | P63mc | a=913 c=617 V=151.5 | SiP4 tetrahedra | 2.128 | [11] | |||
Na4Sr2SiP4 | hexagonal | P63mc | a=9.283 c=7.295 V=164 | 2.498 | [11] | ||||
Na4Eu2SiP4 | hexagonal | P63mc | a=9.251 c=7.198 V=160.7 | 3.226 | [11] | ||||
MgSiP2 | tetragonal | I42d | a=5.721 c=10.095 | orange yellow; semiconductor band gap 2.24 eV; decomposed by water or acid | [12] | ||||
AlSiP3 | orthorhombic | Pmnb | a = 9.872, b = 5.861, c = 6.088, Z=4 | P-P bonds | black | [13][14] | |||
K2SiP2 | orthorhombic | Ibam | a = 12.926, b = 6.867, c= 6.107, Z=4, V=542.07 | one dimensional chain | 2.061 | [13][15] | |||
KSi2P3 | monoclinic | C2/c | a=10.1327 Å, b=10.1382 Å, c=21.118 Å, β=96.88°, Z=8 V=2153.8Å3 | solely fused T3 supertetrahedra | 2.321 | dark red, band gap 1.72 eV | [8] | ||
KSi2P3 | tetragonal | I41/acd | a =21.922 Å, c = 39.868 Å, Z =128 | solely fused T5 supertetrahedra | potassium ion conductor | [16][17] | |||
Ca2Si2P4 | P41212 | a = 7.173, c = 26.295 | band gap 0.984 eV | [18] | |||||
Ca3Si2P4 | monoclinic | a = 7.073 Å, b = 17.210 Å, c = 6.918 Å, β = 111.791° | band gap 0.826 eV | [18] | |||||
Ca3Si8P14 | monoclinic | P21/c | a = 12.138 Å, b = 13.476 Å, c = 6.2176 Å, β = 90.934° | band gap 0.829 eV | [18] | ||||
Ca4SiP4 | cubic | a=11.875 V=1675 | 2.48 | [19] | |||||
MnSiP2 | tetrahedral | I 4 2 d | a 5.5823 c 10.230 | metallic; SHG 32.8 pm/V | [20] | ||||
Fe5SiP | a=6.766 c=12.456 V=493.8 Z=6 | 6.83 | [21] | ||||||
CoSi3P3 | monoclinic | P21 | (pseudo orthrhombic) a = 5.899, b = 5.703, c = 12.736, β = 90.00° Z=4 | resistivity 0.62 Ohm cm band gap 0.12 eV | [22] | ||||
NiSi3P4 | tetragonal | I42m | a = 5.1598 c =10.350 Z = 2 | 3.22 | [13][23] | ||||
NiSi2P3 | Imm2 | a = 3.505, b = 11.071, c = 5.307, Z = 2 | [13][24] | ||||||
FeSi4P4 | a = 4.876, b = 5.545, c = 6.064, α = 85.33°, β = 68.40°, γ = 70.43° Z=4 P and Si random | 3.38 | resistivity 0.3 Ohm cm band gap 0.15, can take in Li or Na | [13][22][25] | |||||
Cu4SiP8 | I41/a | a = 12.186, c = 5.732, Z = 8 | P-P bonds | [13][26] | |||||
ZnSiP2 | Tetragonal | I42d | a = 5.399 Å c = 10.435 Å Z=4 V=304.173 Å3 | chalcopyrite structure SiP4 and Zn4 tetrahedra | 154.936 | 3.3 (measured) | dark red clear; red luminescent; semiconductor; band gap 2.01 eV | [13][27][28] | |
ZnSiP2 | Cubic | over 27 GPa Superconductor Tc = 8.2K | [28] | ||||||
Sr2SiP4 | band gap 1.41 eV | [29] | |||||||
Sr4SiP4 | cubic | a=12.426 V=1919 | 3.48 | [19] | |||||
SrSi7P10 | triclinic | P1 | a =6.1521 Å, b =8.0420 Å, c =8.1374 Å, α =106.854°, β =99.020°, γ =105.190°, Z =1 | tetrahedral network derived from T2 supertetrahedra | band gap 1.1 eV | [30][29] | |||
RhSi3P3 | monoclinic | C2 | a=5.525, b=7.210, c=5.522 β=118.31°, Z=2
P and Si random |
4.005 | black | [13][31] | |||
RuSi4P4 | triclinic | P1 | a = 4.936, b = 5.634, c = 6.162, α = 85.51°, β = 68.26°, γ = 70.69° Z=1 V=150 | 3.74 | metallic | [22][32] | |||
RuSi4P4 | triclinic | P1 | a=4.9362 b=5.6326 c=6.1649 α=85.5073° β=68.2559° γ=70.6990° | 3.732 | dark red;band gap 1.9 eV | [33] | |||
AgSiP2 | Tetragonal | I42d | 6.5275, c = 8.550, Z = 4; V = 364.3 | SiP4 corner sharing | 305.77 | 5.58 | shiny black | [13] | |
Mg2In3Si2P7 | monoclinic | P21 | a 6.9375 b 6.5646 c 14.469 β 103.87° Z=2 | 639.7 | 3.458 | SHG 7.1 × AgGaS2; band gap 2.21 | [34] | ||
Sn4.2Si9P16 | rhombohedral | R3 | a = 9.504 Å, α = 111.00°, and Z = 1 | band gap 0.2 | [35] | ||||
CdSiP2 | tetragonal | I42d | a = 5.680 c = 10.431 Å Z=4 V=336.494 Å3 | chalcopyrite structure | 202.434 | 3.995 | carmine colour; red luminescent | [13][36][37] | |
Cs2SiP2 | Dicesium catena-diphosphidosilicate | Orthorhombic | Ibam | [13] | |||||
Cs5SiP3 | Pentacesium triphosphidosilicate | Orthorhombic | Pnma | a=6.064, b=14.336, c=15.722 | SiP3 planar triangles | dark metallic, air sensitive | [38] | ||
BaSi7P10 | triclinic | P1 | a =6.1537 Å, b =8.0423 Å, c =8.1401 Å, α =106.863°, β =99.050°, γ =105.188°, Z =1 | tetrahedral network derived from T2 supertetrahedra | [30] | ||||
Ba2SiP4 | Tetragonal | I42d | a = 9.90.57 Å, c = 7.31.80 Å; Z = 4 V=718.06 Å | contains P-P bonds | 426.65 | band gap 1.45 eV | [39][29] | ||
Ba2SiP4 | Orthorhombic | Pnma | a=12.3710 b=4.6296 c=7.9783 Z= 8 V=1443.9 | chains of Si-P-Si | 426.65 | 3.925 | black band gap 1.7 eV | [40] | |
Ba2Si3P6 | band gap 1.88 | [29] | |||||||
Ba3Si4P6 | monoclinic | P21/m | a=1153.7 Å, b=728.1 Å, c=752.7 Å, β = 99.41° V=623.76 Z=2 | Zintl compound P-P and Si-Si bonds | 3.78 | black metallic | [13][41] | ||
Ba4SiP4 | cubic | a=13.023 V=2219 | 4.22 | [13][19] | |||||
BaCuSi2P3 | monoclinic | a=4.5659 b=10.1726 c=6.8236 β = 109.311 V=299.10 | layered | [42] | |||||
LaSiP3 | monoclinic | a = 5.972, b = 25.255, c = 4.168, β= 135.71°, Z = 4 | two dimensional network of boat-shaped six-membered rings of Si-P-Si-P-Si-P | [43] | |||||
LaSi2P6 | Cmc21 | a= 10.129,b= 28.17,c= 10.374,Z= 16 | P-P bonds | 380.9 | 3.42 | grey | [13][44] | ||
CeSiP3 | orthorhombic | Pn21a | a = 5.861, b= 5.712, c= 25.295 Å, V=846.7 Å3, Z=8 | P-P bonds | 261.13 | 4.095 | [13][45] | ||
CeSi2P6 | Cmc21 | a= 10.118 Å,b= 28.03 Å,c= 10.311 Å,Z= 16, V=2.924 | P-P bonds | 382.1 | 3.47 | grey | [44] | ||
PrSi2P6 | Cmc21 | a= 10.085 Å,b= 27.95 Å,c= 10.267 Å,Z= 16, V=2.895 nm3 | P-P bonds | grey | [44] | ||||
NdSi2P6 | Cmc21 | a= 10.031,b= 27.81,c= 10.245,Z= 16, V=2.857 | P-P bonds | grey | [44] | ||||
ReSi4P4 | |||||||||
OsSi4P4 | triclinic | P1 | a = 4.948, b = 5.620, c = 6.175, α = 85.65, β = 68.36, γ = 70.89, Z=4 V=150.6 | 4.72 | metallic | [22][32] | |||
IrSi3P3 | monoclinic | C2 | a=6.577, b=7.229, c=5.484 β=117.91°, Z=2 | black | [22][31] | ||||
IrSi3P3 | monoclinic | Cm | a=6.5895 b=7.2470 c=5.4916 β=117.892 | dark red;band gap 1.8 eV | [33] | ||||
PtSi2P2 | monoclinic | P21 | a=6.025 Å, b=9.468 Å, c=11.913 Å, β=102.91°,Z=8, V=552.2 | 6.327 | high resistance metallic,shiny black, air sensitive | [46] | |||
PtSi3P2 | triclinic | P1 | a=4.840 Å,b=5.482 Å,c=8.052 Å, α=91.57°, β=93.52°, γ=108.14°, Z=2 V=202.3 | 5.656 | shiny black | [46] | |||
AuSiP | rhombohedral | R3m | a=3.459, c = 17.200, Z = 3; V = 178.19 | 256.03 | 7.16 | shiny black | [13] | ||
Th2SiP5 | triclinic | a=4.04.3 Å, b=4.04.5 Å, c = 10.279 pm, α = 90.09°, β = 90.09° and γ = 89.50°, Z = 1 | chains of corner linked SiP4 tetrahedra, and square net of P | [43] |
References
- ↑ Jump up to: 1.0 1.1 1.2 Eickhoff, Henrik; Toffoletti, Lorenzo; Klein, Wilhelm; Raudaschl-Sieber, Gabriele; Fässler, Thomas F. (24 May 2017). "Synthesis and Characterization of the Lithium-Rich Phosphidosilicates Li10Si2P5 and Li3Si3P7". Inorganic Chemistry 56 (11): 6688–6694. doi:10.1021/acs.inorgchem.7b00755. PMID 28537719.
- ↑ Jump up to: 2.0 2.1 2.2 Toffoletti, Lorenzo; Kirchhain, Holger; Landesfeind, Johannes; Klein, Wilhelm; van Wüllen, Leo; Gasteiger, Hubert A.; Fässler, Thomas F. (5 December 2016). "Lithium Ion Mobility in Lithium Phosphidosilicates: Crystal Structure, 7Li, 29Si, and 31P MAS NMR Spectroscopy, and Impedance Spectroscopy of Li8SiP4 and Li2SiP2". Chemistry - A European Journal 22 (49): 17635–17645. doi:10.1002/chem.201602903. PMID 27786395.
- ↑ Jump up to: 3.0 3.1 Haffner, Arthur; Bräuniger, Thomas; Johrendt, Dirk (17 October 2016). "Supertetrahedral Networks and Lithium-Ion Mobility in Li2SiP2 and LiSi2P3". Angewandte Chemie International Edition 55 (43): 13585–13588. doi:10.1002/anie.201607074. PMID 27676447.
- ↑ Juza, Robert; Schulz, Werner (1954-02-01). "Ternäre Phosphide und Arsenide des Lithiums mit Elementen der 3. und 4. Gruppe" (in en). Zeitschrift für Anorganische und Allgemeine Chemie 275 (1–3): 65–78. doi:10.1002/zaac.19542750107. ISSN 1521-3749.
- ↑ Strangmüller, Stefan; Eickhoff, Henrik; Müller, David; Klein, Wilhelm; Raudaschl-Sieber, Gabriele; Kirchhain, Holger; Sedlmeier, Christian; Baran, Volodymyr et al. (12 August 2019). "Fast Ionic Conductivity in the Most Lithium-Rich Phosphidosilicate Li14SiP6". Journal of the American Chemical Society 141 (36): 14200–14209. doi:10.1021/jacs.9b05301. PMID 31403777. https://www.repository.cam.ac.uk/handle/1810/296401.
- ↑ Jump up to: 6.0 6.1 6.2 6.3 6.4 6.5 Haffner, Arthur; Hatz, Anna-Katharina; Moudrakovski, Igor; Lotsch, Bettina V.; Johrendt, Dirk (2018). "Fast Sodium-Ion Conductivity in Supertetrahedral Phosphidosilicates" (in en). Angewandte Chemie International Edition 57 (21): 6155–6160. doi:10.1002/anie.201801405. ISSN 1521-3773. PMID 29611884. https://pericles.pericles-prod.literatumonline.com/doi/abs/10.1002/anie.201801405.
- ↑ Haffner, Arthur; Hatz, Anna-Katharina; Hoch, Constatin; Lotsch, Bettina V.; Johrendt, Dirk (2020). "Synthesis and Structure of the Sodium Phosphidosilicate Na2SiP2". European Journal of Inorganic Chemistry 2020 (7): 617–621. doi:10.1002/ejic.201901083.
- ↑ Jump up to: 8.0 8.1 Feng, Kai; Kang, Lei; Yin, Wenlong; Hao, Wenyu; Lin, Zheshuai; Yao, Jiyong; Wu, Yicheng (2013). "KSi2P3: A new layered phosphidopolysilicate (IV)". Journal of Solid State Chemistry 205: 129–133. doi:10.1016/j.jssc.2013.07.018. Bibcode: 2013JSSCh.205..129F.
- ↑ Persson, Kristin (2014). "36 Materials Science". mp-5929: Na5SiP3 (monoclinic, P2_1/c, 14). LBNL Materials Project; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). doi:10.17188/1277186. http://www.osti.gov/servlets/purl/1277186/.
- ↑ Eisenmann, B.; Klein, J.; Somer, M. (1991-12-01). "Crystal structure of trisodium dipotassium triphosphidosilicate, Na3K2SiP3" (in en). Zeitschrift für Kristallographie - Crystalline Materials 197 (1–4): 275. doi:10.1524/zkri.1991.197.14.275. ISSN 2196-7105. Bibcode: 1991ZK....197..275E.
- ↑ Jump up to: 11.0 11.1 11.2 Nuss, J.; Kalpen, H.; Hönle, W.; Hartweg, M.; von Schnering, H. G. (1997-01-01). "Neue Tetrapnictidometallate von Silicium, Germanium, Zinn und Tantal mit der Na6ZnO4-Struktur" (in en). Zeitschrift für Anorganische und Allgemeine Chemie 623 (1–6): 205–211. doi:10.1002/zaac.19976230134. ISSN 1521-3749.
- ↑ Springthorpe, A. J.; Harrison, J. G. (June 1969). "MgSiP2: a New Member of the II IV V2 Family of Semiconducting Compounds" (in en). Nature 222 (5197): 977. doi:10.1038/222977a0. ISSN 0028-0836. Bibcode: 1969Natur.222..977S.
- ↑ Jump up to: 13.00 13.01 13.02 13.03 13.04 13.05 13.06 13.07 13.08 13.09 13.10 13.11 13.12 13.13 13.14 13.15 Kaiser, Peter; Jeitschko, Wolfgang (April 1997). "Preparation and Crystal Structures of the Ternary Compounds Ag2SiP2 and AuSiP". Zeitschrift für Naturforschung B 52 (4): 462–468. doi:10.1515/znb-1997-0406. http://zfn.mpdl.mpg.de/data/Reihe_B/52/ZNB-1997-52b-0462.pdf.
- ↑ von Schnering, Hans Georg; Menge, Günter (1979). "AlSiP3, a compound with a novel wurtzite-pyrite intergrowth structure". Journal of Solid State Chemistry 28 (1): 13–19. doi:10.1016/0022-4596(79)90053-7. Bibcode: 1979JSSCh..28...13V.
- ↑ Eisenmann, Brigitte; Somer, Mehmet (1984-06-01). "K2SiP2, ein Phosphidopolysilikat(IV) / K2SiP2, a Phosphidopolysilicate (IV)" (in en). Zeitschrift für Naturforschung B 39 (6): 736–738. doi:10.1515/znb-1984-0607. ISSN 1865-7117.
- ↑ Johrendt, Dirk; Haffner, Arthur; Hatz, Anna-Katharina; Zeman, Otto E. O.; Hoch, Constantin; Lotsch, Bettina V. (2021-03-18). "Polymorphism and fast Potassium‐Ion Conduction in the T5 Supertetrahedral Phosphidosilicate KSi2P3" (in en). Angewandte Chemie: ange.202101187. doi:10.1002/ange.202101187. ISSN 0044-8249.
- ↑ Johrendt, Dirk; Haffner, Arthur; Hatz, Anna-Katharina; Zeman, Otto E. O.; Hoch, Constantin; Lotsch, Bettina V. (2021). "Polymorphism and fast Potassium-Ion Conduction in the T5 Supertetrahedral Phosphidosilicate KSi2P3" (in en). Angewandte Chemie International Edition 60 (24): 13641–13646. doi:10.1002/anie.202101187. ISSN 1521-3773. PMID 33734533.
- ↑ Jump up to: 18.0 18.1 18.2 Zhang, Xiang; Yu, Tongtong; Li, Chunlong; Wang, Shanpeng; Tao, Xutang (2015-07-01). "Synthesis and Crystal Structures of the Calcium Silicon Phosphides Ca2Si2P4, Ca3Si8P14 and Ca3Si2P4" (in en). Zeitschrift für Anorganische und Allgemeine Chemie 641 (8–9): 1545–1549. doi:10.1002/zaac.201400620. ISSN 1521-3749.
- ↑ Jump up to: 19.0 19.1 19.2 Eisenmann, B.; Jordan, H.; Schäfer, H. (1982). "Zintl-phasen mit komplexen anionen: Darstellung und struktur der o-phosphosilikate und -germanate EII4EIVP4 (MIT EII = Ca, Sr, Ba und EIV = Si, Ge)". Materials Research Bulletin 17 (1): 95–99. doi:10.1016/0025-5408(82)90188-x.
- ↑ Yu, Tongtong; Wang, Shanpeng; Zhang, Xiang; Li, Chenning; Qiao, Jie; Jia, Ning; Han, Bing; Xia, Sheng-Qing et al. (2019-03-26). "MnSiP 2 : A New Mid-IR Ternary Phosphide with Strong SHG Effect and Ultrabroad Transparency Range" (in en). Chemistry of Materials 31 (6): 2010–2018. doi:10.1021/acs.chemmater.8b05015. ISSN 0897-4756. https://pubs.acs.org/doi/10.1021/acs.chemmater.8b05015.
- ↑ Ellner, M.; El-Boragy, M. (1992). "Über die eisenhaltigen vertreter des strukturtyps Pd5Sb2". Journal of Alloys and Compounds 184 (1): 131–138. doi:10.1016/0925-8388(92)90461-h.
- ↑ Jump up to: 22.0 22.1 22.2 22.3 22.4 Perrier, Ch.; Kreisel, J.; Vincent, H.; Chaix-Pluchery, O.; Madar, R. (1997). "Synthesis, crystal structure, physical properties and Raman spectroscopy of transition metal phospho-silicides MSixPy (M = Fe, Co, Ru, Rh, Pd, Os, Ir, Pt)". Journal of Alloys and Compounds 262-263: 71–77. doi:10.1016/s0925-8388(97)00331-9.
- ↑ May, Andrew F.; McGuire, Michael A.; Wang, Hsin (2013-03-13). "Thermoelectric properties of polycrystalline NiSi3P4". Journal of Applied Physics 113 (10): 103707–103707–5. doi:10.1063/1.4794992. ISSN 0021-8979. Bibcode: 2013JAP...113j3707M.
- ↑ Wallinda, Jörg; Jeitschko, Wolfgang (1995). "Ni1.282(4)Si1.284(5)P3 or NiSi2P3: Two Solutions with Different Atom Distributions for One Single-Crystal X-Ray Data Set, Both Refined to Residuals of Less Than 2.5%". Journal of Solid State Chemistry 114 (2): 476–480. doi:10.1006/jssc.1995.1071. Bibcode: 1995JSSCh.114..476W.
- ↑ Coquil, Gaël; Fullenwarth, Julien; Grinbom, Gal; Sougrati, Moulay Tahar; Stievano, Lorenzo; Zitoun, David; Monconduit, Laure (2017). "FeSi 4 P 4 : A novel negative electrode with atypical electrochemical mechanism for Li and Na-ion batteries". Journal of Power Sources 372: 196–203. doi:10.1016/j.jpowsour.2017.10.069. Bibcode: 2017JPS...372..196C.
- ↑ Kaiser, Peter; Jeitschko, Wolfgang (1996-01-01). "Preparation and crystal structure of the Copper Silicon Polyphosphide Cu4SiP8" (in en). Zeitschrift für Anorganische und Allgemeine Chemie 622 (1): 53–56. doi:10.1002/zaac.19966220109. ISSN 1521-3749.
- ↑ Abrahams, S. C.; Bernstein, J. L. (June 1970). "Crystal Structure of Luminescent ZnSiP4". The Journal of Chemical Physics 52 (11): 5607–5613. doi:10.1063/1.1672831. Bibcode: 1970JChPh..52.5607A.
- ↑ Jump up to: 28.0 28.1 Yuan, Yifang; Zhu, Xiangde; Zhou, Yonghui; Chen, Xuliang; An, Chao; Zhou, Ying; Zhang, Ranran; Gu, Chuanchuan et al. (December 2021). "Pressure-engineered optical properties and emergent superconductivity in chalcopyrite semiconductor ZnSiP2" (in en). NPG Asia Materials 13 (1): 15. doi:10.1038/s41427-021-00285-0. ISSN 1884-4049. Bibcode: 2021npjAM..13...15Y.
- ↑ Jump up to: 29.0 29.1 29.2 29.3 Chen, Jindong; Wu, Qingchen; Tian, Haotian; Jiang, Xiaotian; Xu, Feng; Zhao, Xin; Lin, Zheshuai; Luo, Min et al. (2022-03-31). "Uncovering a Vital Band Gap Mechanism of Pnictides" (in en). Advanced Science 9 (14): 2105787. doi:10.1002/advs.202105787. ISSN 2198-3844. PMID 35486031.
- ↑ Jump up to: 30.0 30.1 Haffner, Arthur; Weippert, Valentin; Johrendt, Dirk (2021). "The Phosphidosilicates SrSi7P10 and BaSi7P10" (in en). Zeitschrift für anorganische und allgemeine Chemie 647 (4): 326–330. doi:10.1002/zaac.202000296. ISSN 1521-3749.
- ↑ Jump up to: 31.0 31.1 Kirschen, M.; Vincent, H.; Perrier, Ch.; Chaudouet, P.; Chenevier, B.; Madar, R. (1995). "Synthesis and crystal structure of rhodium and iridium new phospho-silicides". Materials Research Bulletin 30 (4): 507–513. doi:10.1016/0025-5408(95)00021-6.
- ↑ Jump up to: 32.0 32.1 Perrier, Ch.; Vincent, H.; Chaudouët, P.; Chenevier, B.; Madar, R. (1995). "Preparation and crystal structure of a new family of transition metal phospho-silicides". Materials Research Bulletin 30 (3): 357–364. doi:10.1016/0025-5408(95)00001-1.
- ↑ Jump up to: 33.0 33.1 Lee, Shannon; Carnahan, Scott L.; Akopov, Georgiy; Yox, Philip; Wang, Lin‐Lin; Rossini, Aaron J.; Wu, Kui; Kovnir, Kirill (April 2021). "Noncentrosymmetric Tetrel Pnictides RuSi 4 P 4 and IrSi 3 P 3 : Nonlinear Optical Materials with Outstanding Laser Damage Threshold" (in en). Advanced Functional Materials 31 (16): 2010293. doi:10.1002/adfm.202010293. ISSN 1616-301X.
- ↑ Chen, Jindong; Chen, Hongxiang; Xu, Feng; Cao, Liling; Jiang, Xiaotian; Yang, Shunda; Sun, Yingshuang; Zhao, Xin et al. (2021-07-14). "Mg 2 In 3 Si 2 P 7 : A Quaternary Diamond-like Phosphide Infrared Nonlinear Optical Material Derived from ZnGeP 2" (in en). Journal of the American Chemical Society 143 (27): 10309–10316. doi:10.1021/jacs.1c03930. ISSN 0002-7863. PMID 34196529. https://pubs.acs.org/doi/10.1021/jacs.1c03930.
- ↑ Pivan, Jean-Yves; Guerin, Roland; Padiou, Jean; Sergent, Marcel (1988). "Preparation and crystal structure of the semiconducting compound Sn4.2Si9P16". Journal of Solid State Chemistry 76 (1): 26–32. doi:10.1016/0022-4596(88)90189-2. Bibcode: 1988JSSCh..76...26P.
- ↑ Abrahams, S. C.; Bernstein, J. L. (15 July 1971). "Luminescent Piezoelectric CdSiP2: Normal Probability Plot Analysis, Crystal Structure, and Generalized Structure of the AIIBIVC2IV Family". The Journal of Chemical Physics 55 (2): 796–803. doi:10.1063/1.1676146. Bibcode: 1971JChPh..55..796A.
- ↑ Zawilski, Kevin T.; Schunemann, Peter G.; Pollak, Thomas C.; Zelmon, David E.; Fernelius, Nils C.; Kenneth Hopkins, F. (April 2010). "Growth and characterization of large CdSiP2 single crystals" (in en). Journal of Crystal Growth 312 (8): 1127–1132. doi:10.1016/j.jcrysgro.2009.10.034. Bibcode: 2010JCrGr.312.1127Z. https://linkinghub.elsevier.com/retrieve/pii/S0022024809009427.
- ↑ Eisenmann, Brigitte; Klein, Jürgen; Somer, Mehmet (1990-01-01). "CO 32−-isostere Anionen in Cs5SiP3, Cs5SiAs3, Cs5GeP3 und Cs5GeAs3" (in en). Angewandte Chemie 102 (1): 92–93. doi:10.1002/ange.19901020127. ISSN 1521-3757. Bibcode: 1990AngCh.102...92E.
- ↑ Johrendt, Dirk; Arthur, Haffner (2017). "Synthesis, Crystal Structure, and Chemical Bonding of Ba2SiP4" (in en). Zeitschrift für Anorganische und Allgemeine Chemie 643 (21): 1717–1720. doi:10.1002/zaac.201700320. ISSN 1521-3749.
- ↑ Haffner, Arthur; Weippert, Valentin; Johrendt, Dirk (2019-11-08). "Polymorphism of Ba 2 SiP 4: Polymorphism of Ba 2 SiP 4" (in en). Zeitschrift für anorganische und allgemeine Chemie. doi:10.1002/zaac.201900188.
- ↑ Eisenmann, Brigitte; Jordan, Hanna; Schäfer, Herbert (1984). "Ba3Si4P6, eine neue Zintlphase mit vernetzten Si4P5-Käfigen/On Ba3Si4P6, a New Zintl Phase with Connected Si4P5 Cages". Zeitschrift für Naturforschung B 39 (7): 864–867. doi:10.1515/znb-1984-0705. http://zfn.mpdl.mpg.de/data/Reihe_B/39/ZNB-1984-39b-0864.pdf.
- ↑ Yox, Philip; Lee, Shannon J.; Wang, Lin-lin; Jing, Dapeng; Kovnir, Kirill (2021-04-01). "Crystal Structure and Properties of Layered Pnictides BaCuSi 2 Pn 3 (Pn = P, As)" (in en). Inorganic Chemistry 60 (8): 5627–5634. doi:10.1021/acs.inorgchem.0c03636. ISSN 0020-1669. PMID 33794094. https://pubs.acs.org/doi/10.1021/acs.inorgchem.0c03636.
- ↑ Jump up to: 43.0 43.1 Fehrmann, Birgit; Jeitschko, Wolfgang. "THE PHOSPHIDOSILICATE-POLYPHOSPHIDES LaSiP3 AND Th2SiP5". https://www.xray.cz/ecm-cd/ecm/abstract/all/750.htm. Retrieved 2 June 2017.
- ↑ Jump up to: 44.0 44.1 44.2 44.3 Kaiser, Peter; Jeitschko, Wolfgang (July 1996). "The Rare Earth Silicon PhosphidesLnSi2P6(Ln= La, Ce, Pr, and Nd)". Journal of Solid State Chemistry 124 (2): 346–352. doi:10.1006/jssc.1996.0248. Bibcode: 1996JSSCh.124..346K.
- ↑ Hayakawa, Hiroshi; Ono, Shuitiro; Kobayashi, Akiko; Sasaki, Yukiyoshi (1978). "セリウムケイ素トリリン化物(CeSiP3)の結晶構造". Nippon Kagaku Kaishi (9): 1214–1220. doi:10.1246/nikkashi.1978.1214.
- ↑ Jump up to: 46.0 46.1 Perrier, Ch.; Kirschen, M.; Vincent, H.; Gottlieb, U.; Chenevier, B.; Madar, R. (1997). "Synthesis and Crystal Structures of Two New Platinum Phosphosilicides, PtSi3P2and PtSi2P2; Electrical Resistivity of PtSi3P2". Journal of Solid State Chemistry 133 (2): 473–478. doi:10.1006/jssc.1997.7512. Bibcode: 1997JSSCh.133..473P.
Original source: https://en.wikipedia.org/wiki/Phosphidosilicates.
Read more |