Chemistry:3,5-Lutidine

From HandWiki
Revision as of 21:46, 5 February 2024 by NBrushPhys (talk | contribs) (simplify)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
3,5-Lutidine
3,5-Lutidine.svg
Names
Preferred IUPAC name
3,5-Dimethylpyridine
Other names
3,5-Lutidine
Identifiers
3D model (JSmol)
105682
ChemSpider
EC Number
  • 209-708-6
UNII
Properties
C7H9N
Molar mass 107.156 g·mol−1
Appearance oily liquid
Density 0.944 g/cm3
Melting point −6.5 °C (20.3 °F; 266.6 K)
Boiling point 171.9 °C (341.4 °F; 445.0 K)
Acidity (pKa) 6.15[1]
−71.72×10−6 cm3/mol
Hazards
GHS pictograms GHS02: FlammableGHS05: CorrosiveGHS06: ToxicGHS07: Harmful
GHS Signal word Danger
H226, H301, H302, H311, H312, H314, H315, H331, H332, H335
P210, P233, P240, P241, P242, P243, P260, P261, P264, P270, P271, P280, P301+310, P301+312, P301+330+331, P302+352, P303+361+353, P304+312, P304+340, P305+351+338, P310, P311, P312, P321, P322
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references
Tracking categories (test):

3,5-Lutidine is a heterocyclic organic compound with the formula (CH3)2C5H3N. It is one of several dimethyl-substituted derivatives of pyridine, all of which are referred to as lutidines. It is a colorless liquid with mildly basic properties and a pungent odor. The compound is a precursor to the drug omeprazole.

3,5-Lutidine is produced industrially by condensation of acrolein, ammonia, and formaldehyde:[1]

2 CH2=CHCHO + CH2O + NH3 → (CH3)2C5H3N + 2 H2O

Biodegradation

The biodegradation of pyridines proceeds via multiple pathways.[2] Although pyridine is an excellent source of carbon, nitrogen, and energy for certain microorganisms, methylation significantly retards degradation of the pyridine ring.[3][4]

Safety

The -1">50 is 200 mg/kg (oral, rats).

See also

References

  1. 1.0 1.1 Shimizu, Shinkichi; Watanabe, Nanao; Kataoka, Toshiaki; Shoji, Takayuki; Abe, Nobuyuki; Morishita, Sinji; Ichimura, Hisao (2007). "Ullmann's Encyclopedia of Industrial Chemistry". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a22_399. 
  2. Philipp, Bodo; Hoff, Malte; Germa, Florence; Schink, Bernhard; Beimborn, Dieter; Mersch-Sundermann, Volker (2007). "Biochemical Interpretation of Quantitative Structure-Activity Relationships (QSAR) for Biodegradation of N-Heterocycles: A Complementary Approach to Predict Biodegradability". Environmental Science & Technology 41 (4): 1390–1398. doi:10.1021/es061505d. PMID 17593747. Bibcode2007EnST...41.1390P. http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-59540. 
  3. Sims, G. K.; Sommers, L. E. (1985). "Degradation of pyridine derivatives in soil". Journal of Environmental Quality 14 (4): 580–584. doi:10.2134/jeq1985.00472425001400040022x. Bibcode1985JEnvQ..14..580S. 
  4. Sims, G. K.; Sommers, L. E. (1986). "Biodegradation of Pyridine Derivatives in Soil Suspensions". Environmental Toxicology and Chemistry 5 (6): 503–509. doi:10.1002/etc.5620050601.