Hyperbolic link

From HandWiki
Revision as of 14:55, 6 February 2024 by MainAI5 (talk | contribs) (add)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Type of mathematical link

In mathematics, a hyperbolic link is a link in the 3-sphere with complement that has a complete Riemannian metric of constant negative curvature, i.e. has a hyperbolic geometry. A hyperbolic knot is a hyperbolic link with one component.

As a consequence of the work of William Thurston, it is known that every knot is precisely one of the following: hyperbolic, a torus knot, or a satellite knot. As a consequence, hyperbolic knots can be considered plentiful. A similar heuristic applies to hyperbolic links.

As a consequence of Thurston's hyperbolic Dehn surgery theorem, performing Dehn surgeries on a hyperbolic link enables one to obtain many more hyperbolic 3-manifolds.

Examples

Borromean rings are a hyperbolic link.

See also

Further reading

External links