Scale-invariant feature operator

From HandWiki
Revision as of 19:51, 6 February 2024 by Jworkorg (talk | contribs) (over-write)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Algorithm to detect local features in images

In the fields of computer vision and image analysis, the scale-invariant feature operator (or SFOP) is an algorithm to detect local features in images. The algorithm was published by Förstner et al. in 2009.[1]

Algorithm

The scale-invariant feature operator (SFOP) is based on two theoretical concepts:

  • spiral model[2]
  • feature operator[3]

Desired properties of keypoint detectors:

  • Invariance and repeatability for object recognition
  • Accuracy to support camera calibration
  • Interpretability: Especially corners and circles, should be part of the detected keypoints (see figure).
  • As few control parameters as possible with clear semantics
  • Complementarity to known detectors

scale-invariant corner/circle detector.

Theory

Maximize the weight

Maximize the weight [math]\displaystyle{ w }[/math]= 1/variance of a point [math]\displaystyle{ p }[/math]

[math]\displaystyle{ w(\mathbf{p},\alpha,\tau,\sigma)=\left(N(\sigma)-2\right)\frac{\lambda_{min}(M(\mathbf{p},\alpha,\tau,\sigma))}{\Omega(\mathbf{p},\alpha,\tau,\sigma)}    }[/math]  

comprising:

1. the image model[2]

[math]\displaystyle{ \begin{align} \Omega(\mathbf{p},\alpha,\tau,\sigma)& =\sum_{n=1}^{N(\sigma)}[(\mathbf{q}_n-\mathbf{p})^T \mathbf{R}_{\alpha}\mathbf{\nabla}_T g(\mathbf{q}_n)]^2G_{\sigma}(\mathbf{q}_n-\mathbf{p}) \\ & =N(\sigma)\mathbf{tr}\left\{R_{\alpha}\mathbf{\nabla}_{\tau}\mathbf{\nabla}_{\tau}^TR_{\alpha}^T*\mathbf{p}\mathbf{p}^TG_{\sigma}(\mathbf{p})\right\} \end{align} }[/math]

2. the smaller eigenvalue of the structure tensor [math]\displaystyle{ \underbrace{M(\mathbf{p},\alpha,\tau,\sigma)}_{\text{structure tensor}}=\underbrace{G_{\sigma}(\mathbf{p})}_{\text{weighted summation}}*\underbrace{(R_{\sigma}\nabla_{\tau}\nabla_{\tau}^TR_{\sigma}^T)}_{\text{squared rotated gradients}} }[/math]

Reduce the search space

Reduce the 5-dimensional search space by

  • linking the differentiation scale [math]\displaystyle{ \tau }[/math] to the integration scale
[math]\displaystyle{ \tau=\sigma/3 }[/math]
  • solving for the optimal [math]\displaystyle{ \hat \alpha }[/math] using the model
[math]\displaystyle{ \Omega(\alpha) = a - b \cos(2 \alpha - 2 \alpha_0) }[/math]
  • and determining the parameters from three angles, e. g.
[math]\displaystyle{ \Omega(0^\circ), \Omega(60^\circ), \Omega(120^\circ)\quad \rightarrow \quad a, b, \alpha_0 \quad \rightarrow \quad \hat\alpha }[/math]
  • pre-selection possible:
[math]\displaystyle{ \alpha = 0^\circ \, \rightarrow \, \mbox{junctions}, \quad \alpha = 90^\circ \, \rightarrow \, \mbox{circular features} }[/math]

Filter potential keypoints

  • non-maxima suppression over scale, space and angle
  • thresholding the isotropy [math]\displaystyle{ \lambda_{2(M)} }[/math]:
    eigenvalues characterize the shape of the keypoint, smallest eigenvalue has to be larger than threshold [math]\displaystyle{ T_{\lambda} }[/math]
    derived from noise variance [math]\displaystyle{ V(n) }[/math] and significance level [math]\displaystyle{ S }[/math]:
[math]\displaystyle{ T_\lambda(V(n), \tau, \sigma, S) = \frac{N(\sigma)}{16 \pi \tau^4} V(n) \chi^2_{2,S} }[/math]

Algorithm

Algorithm

Results

Interpretability of SFOP keypoints

See also

References

  1. Forstner, Wolfgang; Dickscheid, Timo; Schindler, Falko (2009). "Detecting interpretable and accurate scale-invariant keypoints". 2009 IEEE 12th International Conference on Computer Vision. pp. 2256–2263. doi:10.1109/ICCV.2009.5459458. ISBN 978-1-4244-4420-5. 
  2. 2.0 2.1 Bigün, J. (1990). "A Structure Feature for Some Image Processing Applications Based on Spiral Functions". Computer Vision, Graphics, and Image Processing 51 (2): 166–194. 
  3. Förstner, Wolfgang (1994). "A Framework for Low Level Feature Extraktion". 3. Stockholm, Sweden. pp. 383–394. 

External links