Plastic ratio

From HandWiki
Revision as of 20:31, 6 February 2024 by OrgMain (talk | contribs) (fixing)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Algebraic integer, approximately 1.3247

Template:Infobox non-integer number In mathematics, the plastic ratio is a geometrical proportion close to 53/40. Its true value is the real solution of the equation x3 = x + 1.

The adjective plastic does not refer to the artificial material, but to the formative and sculptural qualities of this ratio, as in plastic arts.

Squares with sides in ratio ρ form a closed spiral

Definition

Three quantities a > b > c > 0 are in the plastic ratio if

[math]\displaystyle{ \frac{a}{b} = \frac{b+c}{a} = \frac{b}{c} }[/math].

The ratio [math]\displaystyle{ \frac{a}{b} }[/math] is commonly denoted [math]\displaystyle{ \rho. }[/math]

Let [math]\displaystyle{ a=\rho\, }[/math] and [math]\displaystyle{ \,b=1 }[/math], then

[math]\displaystyle{ \rho^{2} =1 +c \,\land \,\rho =1 /c }[/math]

[math]\displaystyle{ \implies\rho^{2} -1 =\rho^{-1} }[/math].

It follows that the plastic ratio is found as the unique real solution of the cubic equation [math]\displaystyle{ \rho^{3} -\rho -1 =0. }[/math] The decimal expansion of the root begins as [math]\displaystyle{ 1.324\,717\,957\,244\,746... }[/math] (sequence A060006 in the OEIS).

Solving the equation with Cardano's formula,

[math]\displaystyle{ w_{1,2} = \left( 1 \pm \frac{1}{3} \sqrt{\frac{23}{3}} \right) /2 }[/math]
[math]\displaystyle{ \rho =\sqrt[3]{w_1} +\sqrt[3]{w_2} }[/math]

or, using the hyperbolic cosine,[1]

[math]\displaystyle{ \rho =\frac{2}{ \sqrt{3}} \cosh \left( \frac{1}{3} \operatorname{arcosh} \left( \frac{3 \sqrt{3}}{2} \right) \right). }[/math]

[math]\displaystyle{ \rho }[/math] is the superstable fixed point of the iteration [math]\displaystyle{ x \gets (2x^{3}+1) /(3x^{2}-1) }[/math].

The iteration [math]\displaystyle{ x \gets \sqrt{1 +\tfrac{1}{x}} }[/math] results in the continued reciprocal square root

[math]\displaystyle{ \rho =\sqrt{1 +\cfrac{1}{\sqrt{1 +\cfrac{1}{\sqrt{1 +\cfrac{1}{\ddots}}}}}} }[/math]

Dividing the defining trinomial [math]\displaystyle{ x^{3} -x -1 }[/math] by [math]\displaystyle{ x -\rho }[/math] one obtains [math]\displaystyle{ x^{2} +\rho x +1 /\rho }[/math], and the conjugate elements of [math]\displaystyle{ \rho }[/math] are

[math]\displaystyle{ x_{1,2} = \left( -\rho \pm i \sqrt{3 \rho^2 - 4} \right) /2 }[/math]

Properties

Rectangles in aspect ratios ρ, ρ2, ρ3 (top) and ρ2, ρ, ρ3 (bottom row) tile the square.

The plastic ratio [math]\displaystyle{ \rho }[/math] and golden ratio [math]\displaystyle{ \varphi }[/math] are the only morphic numbers: real numbers x > 1 for which there exist natural numbers m and n such that

[math]\displaystyle{ x +1 =x^{m} }[/math] and [math]\displaystyle{ x -1 =x^{-n} }[/math].[2]

Morphic numbers can serve as basis for a system of measure.

Properties of [math]\displaystyle{ \rho }[/math] (m=3 and n=4) are related to those of [math]\displaystyle{ \varphi }[/math] (m=2 and n=1). For example, The plastic ratio satisfies the continued radical

[math]\displaystyle{ \rho =\sqrt[3]{1 +\sqrt[3]{1 +\sqrt[3]{1 +\cdots}}} }[/math],

while the golden ratio satisfies the analogous

[math]\displaystyle{ \varphi =\sqrt{1 +\sqrt{1 +\sqrt{1 +\cdots}}} }[/math]

The plastic ratio can be expressed in terms of itself as the infinite geometric series

[math]\displaystyle{ \rho^{3} = \sum_{n=0}^{\infty} \rho^{-2n} }[/math] and [math]\displaystyle{ \,\rho^{5} = \sum_{n=0}^{\infty} \rho^{-n} }[/math],

in comparison to the golden ratio identity

[math]\displaystyle{ \varphi = \sum_{n=0}^{\infty} \varphi^{-2n} }[/math] or [math]\displaystyle{ \,\varphi^{2} = \sum_{n=0}^{\infty} \varphi^{-n} }[/math].

Additionally, [math]\displaystyle{ 1 +\varphi^{-1} +\varphi^{-2} =2 }[/math], while [math]\displaystyle{ \sum_{n=0}^{13} \rho^{-n} =4. }[/math]

For all powers

[math]\displaystyle{ \rho^{n} =\rho^{n-2} +\rho^{n-3} =\rho^{n-1} +\rho^{n-5} =\rho^{n-3} +\rho^{n-4} +\rho^{n-5}. }[/math]

The algebraic solution of a reduced quintic equation can be written in terms of square roots, cube roots and the Bring radical. If [math]\displaystyle{ y =x^{5} +x }[/math] then [math]\displaystyle{ x = BR(y) }[/math]. Since [math]\displaystyle{ \rho^{-5} +\rho^{-1} =1, \quad \rho =1 /BR(1) }[/math].

Continued fraction pattern of a few low powers

[math]\displaystyle{ \rho^{-1} = [0;1,3,12,1,1,3,2,3,2,...] \approx 0.7549 }[/math] (25/33)
[math]\displaystyle{ \ \rho^{0} = [1] }[/math]
[math]\displaystyle{ \ \rho^{1} = [1;3,12,1,1,3,2,3,2,4,...] \approx 1.3247 }[/math] (45/34)
[math]\displaystyle{ \ \rho^{2} = [1;1,3,12,1,1,3,2,3,2,...] \approx 1.7549 }[/math] (58/33)
[math]\displaystyle{ \ \rho^{3} = [2;3,12,1,1,3,2,3,2,4,...] \approx 2.3247 }[/math] (79/34)
[math]\displaystyle{ \ \rho^{4} = [3;12,1,1,3,2,3,2,4,2,...] \approx 3.0796 }[/math] (40/13)
[math]\displaystyle{ \ \rho^{5} = [4;12,1,1,3,2,3,2,4,2,...] \approx 4.0796 }[/math] (53/13) ...
[math]\displaystyle{ \ \rho^{7} = [7;6,3,1,1,4,1,1,2,1,1,...] \approx 7.1592 }[/math] (93/13) ...
[math]\displaystyle{ \ \rho^{9} = [12;1,1,3,2,3,2,4,2,141,...] \approx 12.5635 }[/math] (88/7)

The plastic ratio is the smallest Pisot number.[3] Because the absolute value [math]\displaystyle{ 1 /\sqrt{\rho} }[/math] of the algebraic conjugates is smaller than 1, powers of [math]\displaystyle{ \rho }[/math] generate almost integers. For example: [math]\displaystyle{ \rho^{29} =3480.0002874... \approx 3480 +1/3479 }[/math]. After 29 rotation steps the phases of the inward spiraling conjugate pair – initially close to [math]\displaystyle{ \pm 45 \pi/58 }[/math] – nearly align with the imaginary axis.

The minimal polynomial of the plastic ratio [math]\displaystyle{ m(x) = x^{3}-x-1 }[/math] has discriminant [math]\displaystyle{ \Delta=-23 }[/math]. The Hilbert class field of imaginary quadratic field [math]\displaystyle{ K = \mathbb{Q}( \sqrt{\Delta}) }[/math] can be formed by adjoining [math]\displaystyle{ \rho }[/math]. With argument [math]\displaystyle{ \tau=(1 +\sqrt{\Delta})/2\, }[/math] a generator for the ring of integers of [math]\displaystyle{ K }[/math], one has the special value of Dedekind eta quotient

[math]\displaystyle{ \rho = \frac{ e^{\pi i/24}\,\eta(\tau)}{ \sqrt{2}\,\eta(2\tau)} }[/math].[4]

Expressed in terms of the Weber-Ramanujan class invariant Gn

[math]\displaystyle{ \rho = \frac{ \mathfrak{f} ( \sqrt{ \Delta} ) }{ \sqrt{2} } = \frac{ G_{23} }{ \sqrt[4]{2} } }[/math].[5]

Properties of the related Klein j-invariant [math]\displaystyle{ j(\tau) }[/math] result in near identity [math]\displaystyle{ e^{\pi \sqrt{- \Delta}} \approx \left( \sqrt{2}\,\rho \right)^{24} - 24 }[/math]. The difference is < 1/12659.

The elliptic integral singular value[6] [math]\displaystyle{ k_{r} =\lambda^{*}(r) }[/math] for [math]\displaystyle{ r=23 }[/math] has closed form expression

[math]\displaystyle{ \lambda^{*}(23) =\sin ( \arcsin \left( ( \sqrt[4]{2}\,\rho)^{-12} \right) /2) }[/math]

(which is less than 1/3 the eccentricity of the orbit of Venus).

Van der Laan sequence

The 1924 Cordonnier cut. With S1 = 3, S2 = 4, S3 = 5, the harmonic mean of S2/S1 , S1 + S2/S3 and S3/S2 is 3 / Template:Pars ≈ ρ + 1/4922.

In his quest for perceptible clarity, the Dutch Benedictine monk and architect Dom Hans van der Laan (1904-1991) asked for the minimum difference between two sizes, so that we will clearly perceive them as distinct. Also, what is the maximum ratio of two sizes, so that we can still relate them and perceive nearness. According to his observations, the answers are 1/4 and 7/1, spanning a single order of size.[7] Requiring proportional continuity, he constructed a geometric series of eight measures (types of size) with common ratio 2 / (3/4 + 1/71/7) ≈ ρ. Put in rational form, this architectonic system of measure is constructed from a subset of the numbers that bear his name.

The Van der Laan numbers have a close connection to the Perrin and Padovan sequences. In combinatorics, the number of compositions of n into parts 2 and 3 is counted by the nth Van der Laan number.

The Van der Laan sequence is defined by the third-order recurrence relation

[math]\displaystyle{ V_{n} =V_{n-2} +V_{n-3} }[/math] for n > 2,

with initial values

[math]\displaystyle{ V_{1} =0, V_{0} =V_{2} =1 }[/math].

The first few terms are 1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86,... (sequence A182097 in the OEIS). The limit ratio between consecutive terms is the plastic ratio.

Table of the eight Van der Laan measures
k n - m [math]\displaystyle{ V_{n} /V_{m} }[/math] err[math]\displaystyle{ (\rho^{k}) }[/math] interval
0 3 - 3 1 /1 0 minor element
1 8 - 7 4 /3 1/116 major element
2 10 - 8 7 /4 -1/205 minor piece
3 10 - 7 7 /3 1/116 major piece
4 7 - 3 3 /1 -1/12 minor part
5 8 - 3 4 /1 -1/12 major part
6 13 - 7 16 /3 -1/14 minor whole
7 10 - 3 7 /1 -1/6 major whole

The first 14 indices n for which [math]\displaystyle{ V_{n} }[/math] is prime are n = 5, 6, 7, 9, 10, 16, 21, 32, 39, 86, 130, 471, 668, 1264 (sequence A112882 in the OEIS).[8] The last number has 154 decimal digits.

The sequence can be extended to negative indices using

[math]\displaystyle{ V_{n} =V_{n+3} -V_{n+1} }[/math].

The generating function of the Van der Laan sequence is given by

[math]\displaystyle{ \frac{1}{1 -x^{2} -x^{3}} = \sum_{n=0}^{\infty} V_{n}x^{n} }[/math] for [math]\displaystyle{ x \lt 1 /\rho }[/math] [9]

The sequence is related to sums of binomial coefficients by

[math]\displaystyle{ V_{n} = \sum_{k =\lfloor (n +2)/3 \rfloor}^{\lfloor n /2 \rfloor}{k \choose n -2k} }[/math].[10]

The characteristic equation of the recurrence is [math]\displaystyle{ x^{3} -x -1=0 }[/math]. If the three solutions are real root [math]\displaystyle{ \alpha }[/math] and conjugate pair [math]\displaystyle{ \beta }[/math] and [math]\displaystyle{ \gamma }[/math], the Van der Laan numbers can be computed with the Binet formula [10]

[math]\displaystyle{ V_{n-1} =a \alpha^{n} +b \beta^{n} +c \gamma^{n} }[/math], with real [math]\displaystyle{ a }[/math] and conjugates [math]\displaystyle{ b }[/math] and [math]\displaystyle{ c }[/math] the roots of [math]\displaystyle{ 23x^{3} +x -1 = 0 }[/math].

Since [math]\displaystyle{ \left\vert b \beta^{n} +c \gamma^{n} \right\vert \lt 1 /\sqrt{ \alpha^{n}} }[/math] and [math]\displaystyle{ \alpha = \rho }[/math], the number [math]\displaystyle{ V_{n} }[/math] is the nearest integer to [math]\displaystyle{ a\,\rho^{n+1} }[/math], with n > 1 and [math]\displaystyle{ a =\rho /(3 \rho^{2} -1) = }[/math] 0.3106288296404670777619027...

Coefficients [math]\displaystyle{ a =b =c =1 }[/math] result in the Binet formula for the related sequence [math]\displaystyle{ P_{n} =2V_{n} +V_{n-3} }[/math].

The first few terms are 3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, 29, 39, 51, 68, 90, 119,... (sequence A001608 in the OEIS).

This Perrin sequence has the Fermat property: if p is prime, [math]\displaystyle{ P_{p} \equiv P_{1} \bmod p }[/math]. The converse does not hold, but the small number of pseudoprimes [math]\displaystyle{ \,n \mid P_{n} }[/math] makes the sequence special.[11] The only 7 composite numbers below 108 to pass the test are n = 271441, 904631, 16532714, 24658561, 27422714, 27664033, 46672291.[12]

The Van der Laan numbers are obtained as integral powers n > 2 of a matrix with real eigenvalue [math]\displaystyle{ \rho }[/math] [9]

[math]\displaystyle{ Q = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} , }[/math]
[math]\displaystyle{ Q^{n} = \begin{pmatrix} V_{n} & V_{n+1} & V_{n-1} \\ V_{n-1} & V_{n} & V_{n-2} \\ V_{n-2} & V_{n-1} & V_{n-3} \end{pmatrix} }[/math]

The trace of [math]\displaystyle{ Q^{n} }[/math] gives the Perrin numbers.

Geometry

Three partitions of a square into similar rectangles, 1 = 3·1/3 = 2/3 + 2·1/6 = 1/ρ2 + 1/ρ4 + 1/ρ8 .

There are precisely three ways of partitioning a square into three similar rectangles:[13][14]

  1. The trivial solution given by three congruent rectangles with aspect ratio 3:1.
  2. The solution in which two of the three rectangles are congruent and the third one has twice the side length of the other two, where the rectangles have aspect ratio 3:2.
  3. The solution in which the three rectangles are all of different sizes and where they have aspect ratio ρ2. The ratios of the linear sizes of the three rectangles are: ρ (large:medium); ρ2 (medium:small); and ρ3 (large:small). The internal, long edge of the largest rectangle (the square's fault line) divides two of the square's four edges into two segments each that stand to one another in the ratio ρ. The internal, coincident short edge of the medium rectangle and long edge of the small rectangle divides one of the square's other, two edges into two segments that stand to one another in the ratio ρ4.

The fact that a rectangle of aspect ratio ρ2 can be used for dissections of a square into similar rectangles is equivalent to an algebraic property of the number ρ2 related to the Routh–Hurwitz theorem: all of its conjugates have positive real part.[15][16]

The circumradius of the snub icosidodecadodecahedron for unit edge length is

[math]\displaystyle{ \frac{1}{2} \sqrt{ \frac{2 \rho -1}{\rho -1}} }[/math].[17]

History and names

The 1967 St. Benedictusberg Abbey church designed by Hans van der Laan.

[math]\displaystyle{ \rho }[/math] was first studied by Axel Thue in 1912 and by G. H. Hardy in 1919.[3] French high school student Gérard Cordonnier discovered the ratio for himself in 1924. In his correspondence with Hans van der Laan a few years later, he called it The radiant number (French: Le nombre radiant). Van der Laan initially referred to it as The fundamental ratio (Dutch: De grondverhouding), using The plastic number (Dutch: Het plastische getal) from the 1950's onward.[18] In 1944 Carl Siegel showed that ρ is the smallest possible Pisot–Vijayaraghavan number and suggested naming it in honour of Thue.

Unlike the names of the golden and silver ratios, the word plastic was not intended by van der Laan to refer to a specific substance, but rather in its adjectival sense, meaning something that can be given a three-dimensional shape.[19] This, according to Richard Padovan, is because the characteristic ratios of the number, 3/4 and 1/7, relate to the limits of human perception in relating one physical size to another. Van der Laan designed the 1967 St. Benedictusberg Abbey church to these plastic number proportions.[20]

The plastic number is also sometimes called the silver number, a name given to it by Midhat J. Gazalé[21] and subsequently used by Martin Gardner,[22] but that name is more commonly used for the silver ratio 1 + 2 , one of the ratios from the family of metallic means first described by Vera W. de Spinadel. Gardner suggested referring to ρ2 as "high phi", and Donald Knuth created a special typographic mark for this name, a variant of the Greek letter phi ("φ") with its central circle raised, resembling the Georgian letter pari ("Ⴔ").

See also

  • Solutions of equations similar to [math]\displaystyle{ x^{3}=x+1 }[/math]:
    • Golden ratio – the only positive solution of the equation [math]\displaystyle{ x^{2}=x+1 }[/math]
    • Supergolden ratio – the only real solution of the equation [math]\displaystyle{ x^{3}=x^{2}+1 }[/math]

References

  1. Tabrizian, Peyam (2022). "What is the plastic ratio?" (in en). https://www.youtube.com/watch?v=CpBeRv-P5RM. 
  2. Aarts, Jan; Fokkink, Robbert; Kruijtzer, Godfried (2001). "Morphic numbers" (in en). Nieuw Archief voor Wiskunde. 5 2 (1): 56–58. https://www.nieuwarchief.nl/serie5/pdf/naw5-2001-02-1-056.pdf. Retrieved 26 November 2023. 
  3. 3.0 3.1 Panju, Maysum (2011). "A Systematic Construction of Almost Integers" (in en). The Waterloo Mathematics Review 1 (2): 35–43. https://mathreview.uwaterloo.ca/archive/voli/2/panju.pdf. Retrieved 29 November 2023. 
  4. Weisstein, Eric W.. "Plastic Constant". http://mathworld.wolfram.com/PlasticConstant.html. 
  5. Ramanujan G-function (in German)
  6. Weisstein, Eric W.. "Elliptic integral singular value". http://mathworld.wolfram.com/EllipticIntegralSingularValue.html. 
  7. Voet, Caroline (2019). "1:7 and a series of 8" (in en). Van der Laan Foundation. https://domhansvanderlaan.nl/theory-practice/theory/the-plastic-number-series-8/. 
  8. Vn = Pan+3
  9. 9.0 9.1 (sequence A182097 in the OEIS)
  10. 10.0 10.1 (sequence A000931 in the OEIS)
  11. Adams, William; Shanks, Daniel (1982). "Strong Primality Tests that are Not Sufficient". Math. Comp. (AMS) 39 (159): 255–300. doi:10.2307/2007637. 
  12. (sequence A013998 in the OEIS)
  13. Stewart, Ian (1996). "Tales of a Neglected Number". Scientific American 274 (6): 102–103. doi:10.1038/scientificamerican0696-102. Bibcode1996SciAm.274f.102S. http://members.fortunecity.com/templarser/padovan.html.  Feedback in: Stewart, Ian (1996). "A Guide to Computer Dating". Scientific American 275 (5): 118. doi:10.1038/scientificamerican1196-116. Bibcode1996SciAm.275e.116S. 
  14. Spinadel, Vera W. de; Redondo Buitrago, Antonia (2009), "Towards van der Laan's Plastic Number in the Plane", Journal for Geometry and Graphics 13 (2): 163–175, http://www.heldermann-verlag.de/jgg/jgg13/j13h2spin.pdf 
  15. Freiling, C.; Rinne, D. (1994), "Tiling a square with similar rectangles", Mathematical Research Letters 1 (5): 547–558, doi:10.4310/MRL.1994.v1.n5.a3 
  16. Laczkovich, M. (1995), "Tilings of the square with similar rectangles", Discrete & Computational Geometry 13 (3–4): 569–572, doi:10.1007/BF02574063 
  17. Weisstein, Eric W.. "Snub icosidodecadodecahedron". http://mathworld.wolfram.com/SnubIcosidodecadodecahedron.html. 
  18. Voet 2016, note 12.
  19. Shannon, A. G.; Anderson, P. G.; Horadam, A. F. (2006). "Properties of Cordonnier, Perrin and Van der Laan numbers". International Journal of Mathematical Education in Science and Technology 37 (7): 825–831. doi:10.1080/00207390600712554. 
  20. Padovan, Richard (2002), "Dom Hans van der Laan and The Plastic Number", Nexus IV: Architecture and Mathematics (Fucecchio (Florence): Kim Williams Books): 181–193, https://www.nexusjournal.com/the-nexus-conferences/nexus-2002/148-n2002-padovan.html .
  21. Gazalé, Midhat J. (1999). "Chapter VII: The Silver Number". Gnomon: From Pharaohs to Fractals. Princeton, NJ: Princeton University Press. pp. 135–150. 
  22. Gardner, Martin (2001). "Six Challenging Dissection Tasks". A Gardner's Workout. Natick, MA: A K Peters. pp. 121–128. https://static.nsta.org/pdfs/QuantumV4N5.pdf.  (Link to the 1994 Quantum article without Gardner's Postscript.)

Further reading

External links