Modular lambda function
In mathematics, the modular lambda function λ(τ)[note 1] is a highly symmetric Holomorphic function on the complex upper half-plane. It is invariant under the fractional linear action of the congruence group Γ(2), and generates the function field of the corresponding quotient, i.e., it is a Hauptmodul for the modular curve X(2). Over any point τ, its value can be described as a cross ratio of the branch points of a ramified double cover of the projective line by the elliptic curve [math]\displaystyle{ \mathbb{C}/\langle 1, \tau \rangle }[/math], where the map is defined as the quotient by the [−1] involution.
The q-expansion, where [math]\displaystyle{ q = e^{\pi i \tau} }[/math] is the nome, is given by:
- [math]\displaystyle{ \lambda(\tau) = 16q - 128q^2 + 704 q^3 - 3072q^4 + 11488q^5 - 38400q^6 + \dots }[/math]. OEIS: A115977
By symmetrizing the lambda function under the canonical action of the symmetric group S3 on X(2), and then normalizing suitably, one obtains a function on the upper half-plane that is invariant under the full modular group [math]\displaystyle{ \operatorname{SL}_2(\mathbb{Z}) }[/math], and it is in fact Klein's modular j-invariant.
Modular properties
The function [math]\displaystyle{ \lambda(\tau) }[/math] is invariant under the group generated by[1]
- [math]\displaystyle{ \tau \mapsto \tau+2 \ ;\ \tau \mapsto \frac{\tau}{1-2\tau} \ . }[/math]
The generators of the modular group act by[2]
- [math]\displaystyle{ \tau \mapsto \tau+1 \ :\ \lambda \mapsto \frac{\lambda}{\lambda-1} \, ; }[/math]
- [math]\displaystyle{ \tau \mapsto -\frac{1}{\tau} \ :\ \lambda \mapsto 1 - \lambda \ . }[/math]
Consequently, the action of the modular group on [math]\displaystyle{ \lambda(\tau) }[/math] is that of the anharmonic group, giving the six values of the cross-ratio:[3]
- [math]\displaystyle{ \left\lbrace { \lambda, \frac{1}{1-\lambda}, \frac{\lambda-1}{\lambda}, \frac{1}{\lambda}, \frac{\lambda}{\lambda-1}, 1-\lambda } \right\rbrace \ . }[/math]
Relations to other functions
It is the square of the elliptic modulus,[4] that is, [math]\displaystyle{ \lambda(\tau)=k^2(\tau) }[/math]. In terms of the Dedekind eta function [math]\displaystyle{ \eta(\tau) }[/math] and theta functions,[4]
- [math]\displaystyle{ \lambda(\tau) = \Bigg(\frac{\sqrt{2}\,\eta(\tfrac{\tau}{2})\eta^2(2\tau)}{\eta^3(\tau)}\Bigg)^8 = \frac{16}{\left(\frac{\eta(\tau/2)}{\eta(2\tau)}\right)^8 + 16} =\frac{\theta_2^4(\tau)}{\theta_3^4(\tau)} }[/math]
and,
- [math]\displaystyle{ \frac{1}{\big(\lambda(\tau)\big)^{1/4}}-\big(\lambda(\tau)\big)^{1/4} = \frac{1}{2}\left(\frac{\eta(\tfrac{\tau}{4})}{\eta(\tau)}\right)^4 = 2\,\frac{\theta_4^2(\tfrac{\tau}{2})}{\theta_2^2(\tfrac{\tau}{2})} }[/math]
where[5]
- [math]\displaystyle{ \theta_2(\tau) =\sum_{n=-\infty}^\infty e^{\pi i\tau (n+1/2)^2} }[/math]
- [math]\displaystyle{ \theta_3(\tau) = \sum_{n=-\infty}^\infty e^{\pi i\tau n^2} }[/math]
- [math]\displaystyle{ \theta_4(\tau) = \sum_{n=-\infty}^\infty (-1)^n e^{\pi i\tau n^2} }[/math]
In terms of the half-periods of Weierstrass's elliptic functions, let [math]\displaystyle{ [\omega_1,\omega_2] }[/math] be a fundamental pair of periods with [math]\displaystyle{ \tau=\frac{\omega_2}{\omega_1} }[/math].
- [math]\displaystyle{ e_1 = \wp\left(\frac{\omega_1}{2}\right), \quad e_2 = \wp\left(\frac{\omega_2}{2}\right),\quad e_3 = \wp\left(\frac{\omega_1+\omega_2}{2}\right) }[/math]
we have[4]
- [math]\displaystyle{ \lambda = \frac{e_3-e_2}{e_1-e_2} \, . }[/math]
Since the three half-period values are distinct, this shows that [math]\displaystyle{ \lambda }[/math] does not take the value 0 or 1.[4]
The relation to the j-invariant is[6][7]
- [math]\displaystyle{ j(\tau) = \frac{256(1-\lambda(1-\lambda))^3}{(\lambda(1-\lambda))^2} = \frac{256(1-\lambda+\lambda^2)^3}{\lambda^2 (1-\lambda)^2} \ . }[/math]
which is the j-invariant of the elliptic curve of Legendre form [math]\displaystyle{ y^2=x(x-1)(x-\lambda) }[/math]
Given [math]\displaystyle{ m\in\mathbb{C}\setminus\{0,1\} }[/math], let
- [math]\displaystyle{ \tau=i\frac{K\{1-m\}}{K\{m\}} }[/math]
where [math]\displaystyle{ K }[/math] is the complete elliptic integral of the first kind with parameter [math]\displaystyle{ m=k^2 }[/math]. Then
- [math]\displaystyle{ \lambda (\tau)=m. }[/math]
Modular equations
The modular equation of degree [math]\displaystyle{ p }[/math] (where [math]\displaystyle{ p }[/math] is a prime number) is an algebraic equation in [math]\displaystyle{ \lambda (p\tau) }[/math] and [math]\displaystyle{ \lambda (\tau) }[/math]. If [math]\displaystyle{ \lambda (p\tau)=u^8 }[/math] and [math]\displaystyle{ \lambda (\tau)=v^8 }[/math], the modular equations of degrees [math]\displaystyle{ p=2,3,5,7 }[/math] are, respectively,[8]
- [math]\displaystyle{ (1+u^4)^2v^8-4u^4=0, }[/math]
- [math]\displaystyle{ u^4-v^4+2uv(1-u^2v^2)=0, }[/math]
- [math]\displaystyle{ u^6-v^6+5u^2v^2(u^2-v^2)+4uv(1-u^4v^4)=0, }[/math]
- [math]\displaystyle{ (1-u^8)(1-v^8)-(1-uv)^8=0. }[/math]
The quantity [math]\displaystyle{ v }[/math] (and hence [math]\displaystyle{ u }[/math]) can be thought of as a holomorphic function on the upper half-plane [math]\displaystyle{ \operatorname{Im}\tau\gt 0 }[/math]:
- [math]\displaystyle{ \begin{align}v&=\prod_{k=1}^\infty \tanh\frac{(k-1/2)\pi i}{\tau}=\sqrt{2}e^{\pi i\tau/8}\frac{\sum_{k\in\mathbb{Z}}e^{(2k^2+k)\pi i\tau}}{\sum_{k\in\mathbb{Z}}e^{k^2\pi i\tau}}\\ &=\cfrac{\sqrt{2}e^{\pi i\tau/8}}{1+\cfrac{e^{\pi i\tau}}{1+e^{\pi i\tau}+\cfrac{e^{2\pi i\tau}}{1+e^{2\pi i\tau}+\cfrac{e^{3\pi i\tau}}{1+e^{3\pi i\tau}+\ddots}}}}\end{align} }[/math]
Since [math]\displaystyle{ \lambda(i)=1/2 }[/math], the modular equations can be used to give algebraic values of [math]\displaystyle{ \lambda(pi) }[/math] for any prime [math]\displaystyle{ p }[/math].[note 2] The algebraic values of [math]\displaystyle{ \lambda(ni) }[/math] are also given by[9][note 3]
- [math]\displaystyle{ \lambda (ni)=\prod_{k=1}^{n/2} \operatorname{sl}^8\frac{(2k-1)\varpi}{2n}\quad (n\,\text{even}) }[/math]
- [math]\displaystyle{ \lambda (ni)=\frac{1}{2^n}\prod_{k=1}^{n-1} \left(1-\operatorname{sl}^2\frac{k\varpi}{n}\right)^2\quad (n\,\text{odd}) }[/math]
where [math]\displaystyle{ \operatorname{sl} }[/math] is the lemniscate sine and [math]\displaystyle{ \varpi }[/math] is the lemniscate constant.
Lambda-star
Definition and computation of lambda-star
The function [math]\displaystyle{ \lambda^*(x) }[/math][10] (where [math]\displaystyle{ x\in\mathbb{R}^+ }[/math]) gives the value of the elliptic modulus [math]\displaystyle{ k }[/math], for which the complete elliptic integral of the first kind [math]\displaystyle{ K(k) }[/math] and its complementary counterpart [math]\displaystyle{ K(\sqrt{1-k^2}) }[/math] are related by following expression:
- [math]\displaystyle{ \frac{K\left[\sqrt{1-\lambda^*(x)^2}\right]}{K[\lambda^*(x)]} = \sqrt{x} }[/math]
The values of [math]\displaystyle{ \lambda^*(x) }[/math] can be computed as follows:
- [math]\displaystyle{ \lambda^*(x) = \frac{\theta^2_2(i\sqrt{x})}{\theta^2_3(i\sqrt{x})} }[/math]
- [math]\displaystyle{ \lambda^*(x) = \left[\sum_{a=-\infty}^\infty\exp[-(a+1/2)^2\pi\sqrt{x}]\right]^2\left[\sum_{a=-\infty}^\infty\exp(-a^2\pi\sqrt{x})\right]^{-2} }[/math]
- [math]\displaystyle{ \lambda^*(x) = \left[\sum_{a=-\infty}^\infty\operatorname{sech}[(a+1/2)\pi\sqrt{x}]\right]\left[\sum_{a=-\infty}^\infty\operatorname{sech}(a\pi\sqrt{x})\right]^{-1} }[/math]
The functions [math]\displaystyle{ \lambda^* }[/math] and [math]\displaystyle{ \lambda }[/math] are related to each other in this way:
- [math]\displaystyle{ \lambda^*(x) = \sqrt{\lambda(i\sqrt{x})} }[/math]
Properties of lambda-star
Every [math]\displaystyle{ \lambda^* }[/math] value of a positive rational number is a positive algebraic number:
- [math]\displaystyle{ \lambda^*(x \in \mathbb{Q}^+) \in \mathbb{A}^+. }[/math]
[math]\displaystyle{ K(\lambda^*(x)) }[/math] and [math]\displaystyle{ E(\lambda^*(x)) }[/math] (the complete elliptic integral of the second kind) can be expressed in closed form in terms of the gamma function for any [math]\displaystyle{ x\in\mathbb{Q}^+ }[/math], as Selberg and Chowla proved in 1949.[11][12]
The following expression is valid for all [math]\displaystyle{ n \in \mathbb{N} }[/math]:
- [math]\displaystyle{ \sqrt{n} = \sum_{a = 1}^{n} \operatorname{dn}\left[\frac{2a}{n}K\left[\lambda^*\left(\frac{1}{n}\right)\right];\lambda^*\left(\frac{1}{n}\right)\right] }[/math]
where [math]\displaystyle{ \operatorname{dn} }[/math] is the Jacobi elliptic function delta amplitudinis with modulus [math]\displaystyle{ k }[/math].
By knowing one [math]\displaystyle{ \lambda^* }[/math] value, this formula can be used to compute related [math]\displaystyle{ \lambda^* }[/math] values:[9]
- [math]\displaystyle{ \lambda^*(n^2x) = \lambda^*(x)^n\prod_{a=1}^{n}\operatorname{sn}\left\{\frac{2a-1}{n}K[\lambda^*(x)];\lambda^*(x)\right\}^2 }[/math]
where [math]\displaystyle{ n\in\mathbb{N} }[/math] and [math]\displaystyle{ \operatorname{sn} }[/math] is the Jacobi elliptic function sinus amplitudinis with modulus [math]\displaystyle{ k }[/math].
Further relations:
- [math]\displaystyle{ \lambda^*(x)^2 + \lambda^*(1/x)^2 = 1 }[/math]
- [math]\displaystyle{ [\lambda^*(x)+1][\lambda^*(4/x)+1] = 2 }[/math]
- [math]\displaystyle{ \lambda^*(4x) = \frac{1-\sqrt{1-\lambda^*(x)^2}}{1+\sqrt{1-\lambda^*(x)^2}} = \tan\left\{\frac{1}{2}\arcsin[\lambda^*(x)]\right\}^2 }[/math]
- [math]\displaystyle{ \lambda^*(x) - \lambda^*(9x) = 2[\lambda^*(x)\lambda^*(9x)]^{1/4} - 2[\lambda^*(x)\lambda^*(9x)]^{3/4} }[/math]
[math]\displaystyle{ \begin{align} & a^{6}-f^{6} = 2af +2a^5f^5\, &\left(a = \left[\frac{2\lambda^*(x)}{1-\lambda^*(x)^2}\right]^{1/12}\right) &\left(f = \left[\frac{2\lambda^*(25x)}{1-\lambda^*(25x)^2}\right]^{1/12}\right) \\ &a^{8}+b^{8}-7a^4b^4 = 2\sqrt{2}ab+2\sqrt{2}a^7b^7\, &\left(a = \left[\frac{2\lambda^*(x)}{1-\lambda^*(x)^2}\right]^{1/12}\right) &\left(b = \left[\frac{2\lambda^*(49x)}{1-\lambda^*(49x)^2}\right]^{1/12}\right) \\ & a^{12}-c^{12} = 2\sqrt{2}(ac+a^3c^3)(1+3a^2c^2+a^4c^4)(2+3a^2c^2+2a^4c^4)\, &\left(a = \left[\frac{2\lambda^*(x)}{1-\lambda^*(x)^2}\right]^{1/12}\right) &\left(c = \left[\frac{2\lambda^*(121x)}{1-\lambda^*(121x)^2}\right]^{1/12}\right) \\ & (a^2-d^2)(a^4+d^4-7a^2d^2)[(a^2-d^2)^4-a^2d^2(a^2+d^2)^2] = 8ad+8a^{13}d^{13}\, &\left(a = \left[\frac{2\lambda^*(x)}{1-\lambda^*(x)^2}\right]^{1/12}\right) &\left(d = \left[\frac{2\lambda^*(169x)}{1-\lambda^*(169x)^2}\right]^{1/12}\right) \end{align} }[/math]
Special values
|
---|
Lambda-star values of integer numbers of 4n-3-type:
Lambda-star values of integer numbers of 4n-2-type:
Lambda-star values of integer numbers of 4n-1-type:
Lambda-star values of integer numbers of 4n-type:
Lambda-star values of rational fractions:
|
Ramanujan's class invariants
Ramanujan's class invariants [math]\displaystyle{ G_n }[/math] and [math]\displaystyle{ g_n }[/math] are defined as[13]
- [math]\displaystyle{ G_n=2^{-1/4}e^{\pi\sqrt{n}/24}\prod_{k=0}^\infty \left(1+e^{-(2k+1)\pi\sqrt{n}}\right), }[/math]
- [math]\displaystyle{ g_n=2^{-1/4}e^{\pi\sqrt{n}/24}\prod_{k=0}^\infty \left(1-e^{-(2k+1)\pi\sqrt{n}}\right), }[/math]
where [math]\displaystyle{ n\in\mathbb{Q}^+ }[/math]. For such [math]\displaystyle{ n }[/math], the class invariants are algebraic numbers. For example
- [math]\displaystyle{ g_{58}=\sqrt{\frac{5+\sqrt{29}}{2}}, \quad g_{190}=\sqrt{(\sqrt{5}+2)(\sqrt{10}+3)}. }[/math]
Identities with the class invariants include[14]
- [math]\displaystyle{ G_n=G_{1/n},\quad g_{n}=\frac{1}{g_{4/n}},\quad g_{4n}=2^{1/4}g_nG_n. }[/math]
The class invariants are very closely related to the Weber modular functions [math]\displaystyle{ \mathfrak{f} }[/math] and [math]\displaystyle{ \mathfrak{f}_1 }[/math]. These are the relations between lambda-star and the class invariants:
- [math]\displaystyle{ G_n = \sin\{2\arcsin[\lambda^*(n)]\}^{-1/12} = 1\Big /\left[\sqrt[12]{2\lambda^*(n)}\sqrt[24]{1-\lambda^*(n)^2}\right] }[/math]
- [math]\displaystyle{ g_n = \tan\{2\arctan[\lambda^*(n)]\}^{-1/12} = \sqrt[12]{[1-\lambda^*(n)^2]/[2\lambda^*(n)]} }[/math]
- [math]\displaystyle{ \lambda^*(n) = \tan\left\{ \frac{1}{2}\arctan[g_n^{-12}]\right\} = \sqrt{g_n^{24}+1}-g_n^{12} }[/math]
Other appearances
Little Picard theorem
The lambda function is used in the original proof of the Little Picard theorem, that an entire non-constant function on the complex plane cannot omit more than one value. This theorem was proved by Picard in 1879.[15] Suppose if possible that f is entire and does not take the values 0 and 1. Since λ is holomorphic, it has a local holomorphic inverse ω defined away from 0,1,∞. Consider the function z → ω(f(z)). By the Monodromy theorem this is holomorphic and maps the complex plane C to the upper half plane. From this it is easy to construct a holomorphic function from C to the unit disc, which by Liouville's theorem must be constant.[16]
Moonshine
The function [math]\displaystyle{ \tau\mapsto 16/\lambda(2\tau) - 8 }[/math] is the normalized Hauptmodul for the group [math]\displaystyle{ \Gamma_0(4) }[/math], and its q-expansion [math]\displaystyle{ q^{-1} + 20q - 62q^3 + \dots }[/math], OEIS: A007248 where [math]\displaystyle{ q=e^{2\pi i\tau } }[/math], is the graded character of any element in conjugacy class 4C of the monster group acting on the monster vertex algebra.
Footnotes
- ↑ Chandrasekharan (1985) p.115
- ↑ Chandrasekharan (1985) p.109
- ↑ Chandrasekharan (1985) p.110
- ↑ 4.0 4.1 4.2 4.3 Chandrasekharan (1985) p.108
- ↑ Chandrasekharan (1985) p.63
- ↑ Chandrasekharan (1985) p.117
- ↑ Rankin (1977) pp.226–228
- ↑ Borwein, Jonathan M.; Borwein, Peter B. (1987). Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity (First ed.). Wiley-Interscience. ISBN 0-471-83138-7. p. 103–109, 134
- ↑ 9.0 9.1 Jacobi, Carl Gustav Jacob (1829) (in Latin). Fundamenta nova theoriae functionum ellipticarum. p. 42
- ↑ Borwein, Jonathan M.; Borwein, Peter B. (1987). Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity (First ed.). Wiley-Interscience. ISBN 0-471-83138-7. p. 152
- ↑ Chowla, S.; Selberg, A. (1949). "On Epstein's Zeta Function (I).". Proceedings of the National Academy of Sciences 35 (7): 373. doi:10.1073/PNAS.35.7.371.
- ↑ Chowla, S.; Selberg, A.. "On Epstein's Zeta-Function". pp. 86–110. https://eudml.org/doc/150803.
- ↑ Berndt, Bruce C.; Chan, Heng Huat; Zhang, Liang-Cheng (6 June 1997). "Ramanujan's class invariants, Kronecker's limit formula, and modular equations". Transactions of the American Mathematical Society 349 (6): 2125–2173. https://www.ams.org/journals/tran/1997-349-06/.
- ↑ Eymard, Pierre; Lafon, Jean-Pierre (1999) (in French). Autour du nombre Pi. HERMANN. ISBN 2705614435. p. 240
- ↑ Chandrasekharan (1985) p.121
- ↑ Chandrasekharan (1985) p.118
References
Notes
- ↑ [math]\displaystyle{ \lambda(\tau) }[/math] is not a modular function (per the Wikipedia definition), but every modular function is a rational function in [math]\displaystyle{ \lambda(\tau) }[/math]. Some authors use a non-equivalent definition of "modular functions".
- ↑ For any prime power, we can iterate the modular equation of degree [math]\displaystyle{ p }[/math]. This process can be used to give algebraic values of [math]\displaystyle{ \lambda (ni) }[/math] for any [math]\displaystyle{ n\in\mathbb{N}. }[/math]
- ↑ [math]\displaystyle{ \operatorname{sl}a\varpi }[/math] is algebraic for every [math]\displaystyle{ a\in\mathbb{Q}. }[/math]
Other
- Abramowitz, Milton; Stegun, Irene A., eds. (1972), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, New York: Dover Publications, ISBN 978-0-486-61272-0, https://archive.org/details/handbookofmathe000abra
- Chandrasekharan, K. (1985), Elliptic Functions, Grundlehren der mathematischen Wissenschaften, 281, Springer-Verlag, pp. 108–121, ISBN 3-540-15295-4
- Conway, John Horton; Norton, Simon (1979), "Monstrous moonshine", Bulletin of the London Mathematical Society 11 (3): 308–339, doi:10.1112/blms/11.3.308
- Rankin, Robert A. (1977), Modular Forms and Functions, Cambridge University Press, ISBN 0-521-21212-X
- Reinhardt, W. P.; Walker, P. L. (2010), "Elliptic Modular Function", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F. et al., NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, http://dlmf.nist.gov/23.15.E6
- Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, pp. 139 and 298, 1987.
- Conway, J. H. and Norton, S. P. "Monstrous Moonshine." Bull. London Math. Soc. 11, 308-339, 1979.
- Selberg, A. and Chowla, S. "On Epstein's Zeta-Function." J. reine angew. Math. 227, 86-110, 1967.
External links
Original source: https://en.wikipedia.org/wiki/Modular lambda function.
Read more |