Snub icosidodecadodecahedron

From HandWiki
Short description: Polyhedron with 104 faces


Snub icosidodecadodecahedron
Snub icosidodecadodecahedron.png
Type Uniform star polyhedron
Elements F = 104, E = 180
V = 60 (χ = −16)
Faces by sides (20+60){3}+12{5}+12{5/2}
Wythoff symbol | 5/3 3 5
Symmetry group I, [5,3]+, 532
Index references U46, C58, W112
Dual polyhedron Medial hexagonal hexecontahedron
Vertex figure Snub icosidodecadodecahedron vertfig.png
3.3.3.5.3.5/3
Bowers acronym Sided

File:Snub icosidodecadodecahedron.stl In geometry, the snub icosidodecadodecahedron is a nonconvex uniform polyhedron, indexed as U46. It has 104 faces (80 triangles, 12 pentagons, and 12 pentagrams), 180 edges, and 60 vertices.[1] As the name indicates, it belongs to the family of snub polyhedra.

The circumradius of the snub icosidodecadodecahedron with unit edge length is [math]\displaystyle{ \frac{1}{2}\sqrt{\frac{2\rho - 1}{\rho - 1}}, }[/math] where ρ is the plastic constant, or the unique real root of ρ3 = ρ + 1.[2]

Cartesian coordinates

Cartesian coordinates for the vertices of a snub icosidodecadodecahedron are all the even permutations of [math]\displaystyle{ \begin{array}{crrrc} \Bigl(& \pm\,2\alpha,& \pm\,2\gamma,& \pm\,2\beta &\Bigr), \\ \Bigl(& \pm \bigl[\alpha+\frac{\beta}{\varphi}+\gamma\varphi\bigr],& \pm \bigl[-\alpha\varphi+\beta+\frac{\gamma}{\varphi}\bigr],& \pm \bigl[\frac{\alpha}{\varphi}+\beta\varphi-\gamma\bigr] &\Bigr), \\ \Bigl(& \pm \bigl[-\frac{\alpha}{\varphi}+\beta\varphi+\gamma\bigr],& \pm \bigl[-\alpha+\frac{\beta}{\varphi}-\gamma\varphi\bigr],& \pm \bigl[\alpha\varphi+\beta-\frac{\gamma}{\varphi}\bigr] &\Bigr), \\ \Bigl(& \pm \bigl[-\frac{\alpha}{\varphi}+\beta\varphi-\gamma\bigr],& \pm \bigl[\alpha-\frac{\beta}{\varphi}-\gamma\varphi\bigr],& \pm \bigl[\alpha\varphi+\beta+\frac{\gamma}{\varphi}\bigr] &\Bigr), \\ \Bigl(& \pm \bigl[\alpha+\frac{\beta}{\varphi}-\gamma\varphi\bigr],& \pm \bigl[\alpha\varphi-\beta+\frac{\gamma}{\varphi}\bigr],& \pm \bigl[\frac{\alpha}{\varphi}+\beta\varphi+\gamma\bigr] &\Bigr), \end{array} }[/math]

with an even number of plus signs, where [math]\displaystyle{ \varphi = \tfrac{1+\sqrt 5}{2} }[/math] is the golden ratio; ρ is the plastic ratio, or the unique real solution to ρ3 = ρ + 1; [math]\displaystyle{ \begin{align} \alpha &= \rho + 1 = \rho^3, \\[4pt] \beta &= \varphi^2\rho^4 + \varphi, \\[4pt] \gamma &= \rho^2 + \varphi\rho. \end{align} }[/math] Taking the odd permutations of the above coordinates with an odd number of plus signs gives another form, the enantiomorph of the other one.[3]

Related polyhedra

Medial hexagonal hexecontahedron

Medial hexagonal hexecontahedron
DU46 medial hexagonal hexecontahedron.png
Type Star polyhedron
Face DU46 facets.png
Elements F = 60, E = 180
V = 104 (χ = −16)
Symmetry group I, [5,3]+, 532
Index references DU46
dual polyhedron Snub icosidodecadodecahedron

File:Medial hexagonal hexecontahedron.stl The medial hexagonal hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the uniform snub icosidodecadodecahedron.

See also

References

  1. Maeder, Roman. "46: snub icosidodecadodecahedron". https://www.mathconsult.ch/static/unipoly/46.html. 
  2. Weisstein, Eric W.. "Snub icosidodecadodecahedron". http://mathworld.wolfram.com/SnubIcosidodecadodecahedron.html. 
  3. Skilling, John (1975), "The complete set of uniform polyhedra", Philosophical Transactions of the Royal Society A 278 (1278): 111–135, doi:10.1098/rsta.1975.0022 .

External links