Square tiling honeycomb

From HandWiki
Revision as of 22:32, 6 February 2024 by Steve Marsio (talk | contribs) (linkage)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Square tiling honeycomb
H3 443 FC boundary.png
Type Hyperbolic regular honeycomb
Paracompact uniform honeycomb
Schläfli symbols {4,4,3}
r{4,4,4}
{41,1,1}
Coxeter diagrams CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node.pngCDel 4.pngCDel node 1.pngCDel split1-44.pngCDel nodes.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
CDel nodes 11.pngCDel 2a2b-cross.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel node 1.pngCDel 4.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
CDel branchu 11.pngCDel 2.pngCDel branchu 11.pngCDel 2.pngCDel branchu 11.pngCDel 2.pngCDel branchu 11.pngCDel node 1.pngCDel 4.pngCDel node g.pngCDel 4sg.pngCDel node g.pngCDel 3g.pngCDel node g.png
Cells {4,4} Square tiling uniform coloring 1.png 40px Square tiling uniform coloring 7.png
Faces square {4}
Edge figure triangle {3}
Vertex figure Square tiling honeycomb verf.png
cube, {4,3}
Dual Order-4 octahedral honeycomb
Coxeter groups [math]\displaystyle{ \overline{R}_3 }[/math], [4,4,3]
[math]\displaystyle{ \overline{N}_3 }[/math], [43]
[math]\displaystyle{ \overline{M}_3 }[/math], [41,1,1]
Properties Regular

In the geometry of hyperbolic 3-space, the square tiling honeycomb is one of 11 paracompact regular honeycombs. It is called paracompact because it has infinite cells, whose vertices exist on horospheres and converge to a single ideal point at infinity. Given by Schläfli symbol {4,4,3}, it has three square tilings, {4,4}, around each edge, and six square tilings around each vertex, in a cubic {4,3} vertex figure.[1]

A geometric honeycomb is a space-filling of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions.

Honeycombs are usually constructed in ordinary Euclidean ("flat") space, like the convex uniform honeycombs. They may also be constructed in non-Euclidean spaces, such as hyperbolic uniform honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space.

Rectified order-4 square tiling

It is also seen as a rectified order-4 square tiling honeycomb, r{4,4,4}:

{4,4,4} r{4,4,4} = {4,4,3}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png = CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
H3 444 FC boundary.png H3 444 boundary 0100.png

Symmetry

The square tiling honeycomb has three reflective symmetry constructions: CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png as a regular honeycomb, a half symmetry construction CDel node 1.pngCDel 4.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel nodes 11.pngCDel 2a2b-cross.pngCDel nodes.pngCDel split2.pngCDel node.png, and lastly a construction with three types (colors) of checkered square tilings CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel split1-44.pngCDel nodes.png.

It also contains an index 6 subgroup [4,4,3*] ↔ [41,1,1], and a radial subgroup [4,(4,3)*] of index 48, with a right dihedral-angled octahedral fundamental domain, and four pairs of ultraparallel mirrors: CDel branchu 11.pngCDel 2.pngCDel branchu 11.pngCDel 2.pngCDel branchu 11.pngCDel 2.pngCDel branchu 11.png.

This honeycomb contains CDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node 1.png that tile 2-hypercycle surfaces, which are similar to the paracompact order-3 apeirogonal tiling CDel node.pngCDel 3.pngCDel node.pngCDel infin.pngCDel node 1.png:

H2-I-3-dual.svg

Related polytopes and honeycombs

The square tiling honeycomb is a regular hyperbolic honeycomb in 3-space. It is one of eleven regular paracompact honeycombs.

There are fifteen uniform honeycombs in the [4,4,3] Coxeter group family, including this regular form, and its dual, the order-4 octahedral honeycomb, {3,4,4}.

The square tiling honeycomb is part of the order-4 square tiling honeycomb family, as it can be seen as a rectified order-4 square tiling honeycomb.

It is related to the 24-cell, {3,4,3}, which also has a cubic vertex figure. It is also part of a sequence of honeycombs with square tiling cells:

Rectified square tiling honeycomb

Rectified square tiling honeycomb
Type Paracompact uniform honeycomb
Semiregular honeycomb
Schläfli symbols r{4,4,3} or t1{4,4,3}
2r{3,41,1}
r{41,1,1}
Coxeter diagrams CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
CDel nodes 11.pngCDel split2-44.pngCDel node.pngCDel 3.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
CDel nodes 11.pngCDel split2-44.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
CDel node 1.pngCDel split1-uu.pngCDel nodes 11.pngCDel 2a2b-cross.pngCDel nodes 11.pngCDel split2-uu.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
Cells {4,3} Uniform polyhedron-43-t0.png
r{4,4}Uniform tiling 44-t1.png
Faces square {4}
Vertex figure Rectified square tiling honeycomb verf.png
triangular prism
Coxeter groups [math]\displaystyle{ \overline{R}_3 }[/math], [4,4,3]
[math]\displaystyle{ \overline{O}_3 }[/math], [3,41,1]
[math]\displaystyle{ \overline{M}_3 }[/math], [41,1,1]
Properties Vertex-transitive, edge-transitive

The rectified square tiling honeycomb, t1{4,4,3}, CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png has cube and square tiling facets, with a triangular prism vertex figure.

H3 443 boundary 0100.png

It is similar to the 2D hyperbolic uniform triapeirogonal tiling, r{∞,3}, with triangle and apeirogonal faces.

H2 tiling 23i-2.png

Truncated square tiling honeycomb

Truncated square tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbols t{4,4,3} or t0,1{4,4,3}
Coxeter diagrams CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel split1-44.pngCDel nodes 11.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node h0.png
CDel nodes 11.pngCDel split2-44.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
Cells {4,3} Uniform polyhedron-43-t0.png
t{4,4}Uniform tiling 44-t01.png
Faces square {4}
octagon {8}
Vertex figure Truncated square tiling honeycomb verf.png
triangular pyramid
Coxeter groups [math]\displaystyle{ \overline{R}_3 }[/math], [4,4,3]
[math]\displaystyle{ \overline{N}_3 }[/math], [43]
[math]\displaystyle{ \overline{M}_3 }[/math], [41,1,1]
Properties Vertex-transitive

The truncated square tiling honeycomb, t{4,4,3}, CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png has cube and truncated square tiling facets, with a triangular pyramid vertex figure. It is the same as the cantitruncated order-4 square tiling honeycomb, tr{4,4,4}, CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png.

H3 443-1100.png

Bitruncated square tiling honeycomb

Bitruncated square tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbols 2t{4,4,3} or t1,2{4,4,3}
Coxeter diagram CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Cells t{4,3} Uniform polyhedron-43-t01.png
t{4,4}Uniform tiling 44-t01.png
Faces triangle {3}
square {4}
octagon {8}
Vertex figure Bitruncated square tiling honeycomb verf.png
digonal disphenoid
Coxeter groups [math]\displaystyle{ \overline{R}_3 }[/math], [4,4,3]
Properties Vertex-transitive

The bitruncated square tiling honeycomb, 2t{4,4,3}, CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png has truncated cube and truncated square tiling facets, with a digonal disphenoid vertex figure.

H3 443-0110.png

Cantellated square tiling honeycomb

Cantellated square tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbols rr{4,4,3} or t0,2{4,4,3}
Coxeter diagrams CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
CDel nodes 11.pngCDel 2a2b-cross.pngCDel nodes 11.pngCDel split2.pngCDel node.pngCDel node 1.pngCDel 4.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Cells r{4,3} Uniform polyhedron-43-t1.png
rr{4,4}40px
{}x{3}Triangular prism.png
Faces triangle {3}
square {4}
Vertex figure Cantellated square tiling honeycomb verf.png
isosceles triangular prism
Coxeter groups [math]\displaystyle{ \overline{R}_3 }[/math], [4,4,3]
Properties Vertex-transitive

The cantellated square tiling honeycomb, rr{4,4,3}, CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png has cuboctahedron, square tiling, and triangular prism facets, with an isosceles triangular prism vertex figure.

H3 443-1010.png

Cantitruncated square tiling honeycomb

Cantitruncated square tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbols tr{4,4,3} or t0,1,2{4,4,3}
Coxeter diagram CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Cells t{4,3} Uniform polyhedron-43-t01.png
tr{4,4}40px
{}x{3} Triangular prism.png
Faces triangle {3}
square {4}
octagon {8}
Vertex figure Cantitruncated square tiling honeycomb verf.png
isosceles triangular pyramid
Coxeter groups [math]\displaystyle{ \overline{R}_3 }[/math], [4,4,3]
Properties Vertex-transitive

The cantitruncated square tiling honeycomb, tr{4,4,3}, CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png has truncated cube, truncated square tiling, and triangular prism facets, with an isosceles triangular pyramid vertex figure.

H3 443-1110.png

Runcinated square tiling honeycomb

Runcinated square tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol t0,3{4,4,3}
Coxeter diagrams CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
CDel nodes 11.pngCDel 2a2b-cross.pngCDel nodes.pngCDel split2.pngCDel node 1.pngCDel node 1.pngCDel 4.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Cells {3,4} Uniform polyhedron-43-t2.png
{4,4}40px
{}x{4} 40px
{}x{3} Triangular prism.png
Faces triangle {3}
square {4}
Vertex figure Runcinated square tiling honeycomb verf.png
irregular triangular antiprism
Coxeter groups [math]\displaystyle{ \overline{R}_3 }[/math], [4,4,3]
Properties Vertex-transitive

The runcinated square tiling honeycomb, t0,3{4,4,3}, CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png has octahedron, triangular prism, cube, and square tiling facets, with an irregular triangular antiprism vertex figure.

H3 443-1001.png

Runcitruncated square tiling honeycomb

Runcitruncated square tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbols t0,1,3{4,4,3}
s2,3{3,4,4}
Coxeter diagrams CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
Cells rr{4,3} Uniform polyhedron-43-t02.png
t{4,4}40px
{}x{3} 40px
{}x{8} Octagonal prism.png
Faces triangle {3}
square {4}
octagon {8}
Vertex figure Runcitruncated square tiling honeycomb verf.png
isosceles-trapezoidal pyramid
Coxeter groups [math]\displaystyle{ \overline{R}_3 }[/math], [4,4,3]
Properties Vertex-transitive

The runcitruncated square tiling honeycomb, t0,1,3{4,4,3}, CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png has rhombicuboctahedron, octagonal prism, triangular prism and truncated square tiling facets, with an isosceles-trapezoidal pyramid vertex figure.

H3 443-1101.png

Runcicantellated square tiling honeycomb

The runcicantellated square tiling honeycomb is the same as the runcitruncated order-4 octahedral honeycomb.

Omnitruncated square tiling honeycomb

Omnitruncated square tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol t0,1,2,3{4,4,3}
Coxeter diagram CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Cells tr{4,4} Uniform tiling 44-t012.png
{}x{6} 40px
{}x{8} 40px
tr{4,3} Uniform polyhedron-43-t012.png
Faces square {4}
hexagon {6}
octagon {8}
Vertex figure Omnitruncated square tiling honeycomb verf.png
irregular tetrahedron
Coxeter groups [math]\displaystyle{ \overline{R}_3 }[/math], [4,4,3]
Properties Vertex-transitive

The omnitruncated square tiling honeycomb, t0,1,2,3{4,4,3}, CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png has truncated square tiling, truncated cuboctahedron, hexagonal prism, and octagonal prism facets, with an irregular tetrahedron vertex figure.

H3 443-1111.png

Omnisnub square tiling honeycomb

Omnisnub square tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol h(t0,1,2,3{4,4,3})
Coxeter diagram CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
Cells sr{4,4} Uniform tiling 44-snub.png
sr{2,3} 40px
sr{2,4} 40px
sr{4,3} Uniform polyhedron-43-s012.png
Faces triangle {3}
square {4}
Vertex figure irregular tetrahedron
Coxeter group [4,4,3]+
Properties Non-uniform, vertex-transitive

The alternated omnitruncated square tiling honeycomb (or omnisnub square tiling honeycomb), h(t0,1,2,3{4,4,3}), CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png has snub square tiling, snub cube, triangular antiprism, square antiprism, and tetrahedron cells, with an irregular tetrahedron vertex figure.

Alternated square tiling honeycomb

Alternated square tiling honeycomb
Type Paracompact uniform honeycomb
Semiregular honeycomb
Schläfli symbol h{4,4,3}
hr{4,4,4}
{(4,3,3,4)}
h{41,1,1}
Coxeter diagrams CDel nodes 10ru.pngCDel split2-44.pngCDel node.pngCDel 3.pngCDel node.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
CDel node.pngCDel 4.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel nodes 10.pngCDel 2a2b-cross.pngCDel nodes 10ru.pngCDel split2-44.pngCDel node.png
CDel node 1.pngCDel split1-44.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel split1-43.pngCDel nodes 10lu.png
CDel node h.pngCDel split1-44.pngCDel nodes.pngCDel split2-44.pngCDel node h.pngCDel node h0.pngCDel 4.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h0.png
CDel nodes.pngCDel split2-44.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel node.pngCDel 4.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h0.pngCDel node 1.pngCDel split1-uu.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes 11.pngCDel split2-uu.pngCDel node.png
Cells {4,4} Uniform tiling 44-t0.svg
{4,3} Uniform polyhedron-43-t0.png
Faces square {4}
Vertex figure Uniform polyhedron-43-t1.png
cuboctahedron
Coxeter groups [math]\displaystyle{ \overline{O}_3 }[/math], [3,41,1]
[4,1+,4,4] ↔ [∞,4,4,∞]
[math]\displaystyle{ \widehat{BR}_3 }[/math], [(4,4,3,3)]
[1+,41,1,1] ↔ [∞[6]]
Properties Vertex-transitive, edge-transitive, quasiregular

The alternated square tiling honeycomb, h{4,4,3}, CDel nodes 10ru.pngCDel split2-44.pngCDel node.pngCDel 3.pngCDel node.png is a quasiregular paracompact uniform honeycomb in hyperbolic 3-space. It has cube and square tiling facets in a cuboctahedron vertex figure.

Cantic square tiling honeycomb

Cantic square tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol h2{4,4,3}
Coxeter diagrams CDel nodes 10ru.pngCDel split2-44.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Cells t{4,4} Uniform tiling 44-t01.svg
r{4,3} 40px
t{4,3} Uniform polyhedron-43-t01.png
Faces triangle {3}
square {4}
octagon {8}
Vertex figure Cantic square tiling honeycomb verf.png
rectangular pyramid
Coxeter groups [math]\displaystyle{ \overline{O}_3 }[/math], [3,41,1]
Properties Vertex-transitive

The cantic square tiling honeycomb, h2{4,4,3}, CDel nodes 10ru.pngCDel split2-44.pngCDel node 1.pngCDel 3.pngCDel node.png is a paracompact uniform honeycomb in hyperbolic 3-space. It has truncated square tiling, truncated cube, and cuboctahedron facets, with a rectangular pyramid vertex figure.

Runcic square tiling honeycomb

Runcic square tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol h3{4,4,3}
Coxeter diagrams CDel nodes 10ru.pngCDel split2-44.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Cells {4,4} Uniform tiling 44-t0.svg
r{4,3} 40px
{3,4} Uniform polyhedron-43-t2.png
Faces triangle {3}
square {4}
Vertex figure Runcic square tiling honeycomb verf.png
square frustum
Coxeter groups [math]\displaystyle{ \overline{O}_3 }[/math], [3,41,1]
Properties Vertex-transitive

The runcic square tiling honeycomb, h3{4,4,3}, CDel nodes 10ru.pngCDel split2-44.pngCDel node.pngCDel 3.pngCDel node 1.png is a paracompact uniform honeycomb in hyperbolic 3-space. It has square tiling, rhombicuboctahedron, and octahedron facets in a square frustum vertex figure.

Runcicantic square tiling honeycomb

Runcicantic square tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol h2,3{4,4,3}
Coxeter diagrams CDel nodes 10ru.pngCDel split2-44.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Cells t{4,4} Uniform tiling 44-t01.svg
tr{4,3} 40px
t{3,4} Uniform polyhedron-43-t12.png
Faces square {4}
hexagon {6}
octagon {8}
Vertex figure Runcicantic square tiling honeycomb verf.png
mirrored sphenoid
Coxeter groups [math]\displaystyle{ \overline{O}_3 }[/math], [3,41,1]
Properties Vertex-transitive

The runcicantic square tiling honeycomb, h2,3{4,4,3}, CDel nodes 10ru.pngCDel split2-44.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png, is a paracompact uniform honeycomb in hyperbolic 3-space. It has truncated square tiling, truncated cuboctahedron, and truncated octahedron facets in a mirrored sphenoid vertex figure.

Alternated rectified square tiling honeycomb

Alternated rectified square tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol hr{4,4,3}
Coxeter diagrams CDel node.pngCDel 4.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel nodes 10.pngCDel 2a2b-cross.pngCDel nodes 10ru.pngCDel split2.pngCDel node.png
Cells
Faces
Vertex figure triangular prism
Coxeter groups [4,1+,4,3] = [∞,3,3,∞]
Properties Nonsimplectic, vertex-transitive

The alternated rectified square tiling honeycomb is a paracompact uniform honeycomb in hyperbolic 3-space.

See also

  • Convex uniform honeycombs in hyperbolic space
  • Regular tessellations of hyperbolic 3-space
  • Paracompact uniform honeycombs

References

  1. Coxeter The Beauty of Geometry, 1999, Chapter 10, Table III
  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. ISBN:0-486-61480-8. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
  • The Beauty of Geometry: Twelve Essays (1999), Dover Publications, LCCN 99-35678, ISBN:0-486-40919-8 (Chapter 10, Regular Honeycombs in Hyperbolic Space) Table III
  • Jeffrey R. Weeks The Shape of Space, 2nd edition ISBN:0-8247-0709-5 (Chapter 16-17: Geometries on Three-manifolds I, II)
  • Norman Johnson Uniform Polytopes, Manuscript
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
    • N.W. Johnson: Geometries and Transformations, (2018) Chapter 13: Hyperbolic Coxeter groups
    • Norman W. Johnson and Asia Ivic Weiss Quadratic Integers and Coxeter Groups PDF Can. J. Math. Vol. 51 (6), 1999 pp. 1307–1336