Chemistry:Iodite

From HandWiki
Revision as of 07:36, 8 February 2024 by JMinHep (talk | contribs) (over-write)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Ion
Iodite
Iodite ion.svg
Names
IUPAC name
iodite
Systematic IUPAC name
dioxidoiodate(1−)
Identifiers
3D model (JSmol)
ChemSpider
Properties
IO2
Molar mass 58.90 g/mol
Conjugate acid Iodous acid
Related compounds
Other anions
Chlorite
Bromite
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references
Tracking categories (test):

The iodite ion, or iodine dioxide anion, is the halite with the chemical formula IO2. Within the ion the Iodine exists in the oxidation state of +3.

Iodite anion

Iodites (including iodous acid) are highly unstable and have been observed[1] but never isolated.[citation needed] They will rapidly disproportionate to molecular Iodine and Iodates.[2] However, they have been detected as intermediates in the conversion between iodide and iodate.[3][4]

Iodous acid

Iodous acid
Iodige Saeure.png
Ball-and-stick model of iodous acid
Space-filling model of iodous acid
Names
IUPAC name
iodous acid
Identifiers
3D model (JSmol)
ChemSpider
Properties
HIO2
Molar mass 159.91 g/mol
Conjugate base Iodite
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references
Tracking categories (test):

Iodous acid is acid form of the iodite ion, with the formula HIO2.

Other oxyanions

Iodine can assume oxidation states of −1, +1, +3, +5, or +7. A number of neutral iodine oxides are also known.

Iodine oxidation state −1 +1 +3 +5 +7
Name Iodide Hypoiodite Iodite Iodate periodate
Formula I IO IO2 IO3 IO4 or IO5−6

References

  1. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8. 
  2. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8. 
  3. Gupta, Yugul Kishore; Sharma, Devendra Nath (August 1971). "Kinetics and mechanism of the reduction of iodate to iodite by bromide in the presence of phenol". The Journal of Physical Chemistry 75 (16): 2516–2522. doi:10.1021/j100685a018. 
  4. Gilles, Mary K.; Polak, Mark L.; Lineberger, W. C. (1992). "Photoelectron spectroscopy of the halogen oxide anions FO−, ClO−, BrO−, IO−, OClO−, and OIO−". The Journal of Chemical Physics 96 (11): 8012. doi:10.1063/1.462352. Bibcode1992JChPh..96.8012G.