Sphere packing in a sphere
From HandWiki
Sphere packing in a sphere is a three-dimensional packing problem with the objective of packing a given number of equal spheres inside a unit sphere. It is the three-dimensional equivalent of the circle packing in a circle problem in two dimensions.
Number of inner spheres |
Maximum radius of inner spheres[1] | Packing density |
Optimality | Diagram | |
---|---|---|---|---|---|
Exact form | Approximate | ||||
1 | [math]\displaystyle{ 1 }[/math] | 1.0000 | 1 | Trivially optimal. | |
2 | [math]\displaystyle{ \dfrac {1} {2} }[/math] | 0.5000 | 0.25 | Trivially optimal. | |
3 | [math]\displaystyle{ 2 \sqrt {3} - 3 }[/math] | 0.4641... | 0.29988... | Trivially optimal. | |
4 | [math]\displaystyle{ \sqrt {6} - 2 }[/math] | 0.4494... | 0.36326... | Proven optimal. | |
5 | [math]\displaystyle{ \sqrt {2} - 1 }[/math] | 0.4142... | 0.35533... | Proven optimal. | |
6 | [math]\displaystyle{ \sqrt {2} - 1 }[/math] | 0.4142... | 0.42640... | Proven optimal. | |
7 | 0.3859... | 0.40231... | Proven optimal. | ||
8 | 0.3780... | 0.43217... | Proven optimal. | ||
9 | 0.3660... | 0.44134... | Proven optimal. | ||
10 | 0.3530... | 0.44005... | Proven optimal. | ||
11 | [math]\displaystyle{ \dfrac {\sqrt{5} - 3} {2} + \sqrt{5 - 2 \sqrt{5} } }[/math] | 0.3445... | 0.45003... | Proven optimal. | |
12 | [math]\displaystyle{ \dfrac {\sqrt{5} - 3} {2} + \sqrt{5 - 2 \sqrt{5} } }[/math] | 0.3445... | 0.49095... | Proven optimal. |
References
Original source: https://en.wikipedia.org/wiki/Sphere packing in a sphere.
Read more |