Sphere packing in a sphere

From HandWiki
Revision as of 05:20, 9 March 2024 by WikiG (talk | contribs) (change)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Sphere packing in a sphere is a three-dimensional packing problem with the objective of packing a given number of equal spheres inside a unit sphere. It is the three-dimensional equivalent of the circle packing in a circle problem in two dimensions.

Number of
inner spheres
Maximum radius of inner spheres[1] Packing
density
Optimality Diagram
Exact form Approximate
1 [math]\displaystyle{ 1 }[/math] 1.0000 1 Trivially optimal. Spheres in sphere 01.png
2 [math]\displaystyle{ \dfrac {1} {2} }[/math] 0.5000 0.25 Trivially optimal. Spheres in sphere 02.png
3 [math]\displaystyle{ 2 \sqrt {3} - 3 }[/math] 0.4641... 0.29988... Trivially optimal. Spheres in sphere 03.png
4 [math]\displaystyle{ \sqrt {6} - 2 }[/math] 0.4494... 0.36326... Proven optimal. Spheres in sphere 04.png
5 [math]\displaystyle{ \sqrt {2} - 1 }[/math] 0.4142... 0.35533... Proven optimal. Spheres in sphere 05.png
6 [math]\displaystyle{ \sqrt {2} - 1 }[/math] 0.4142... 0.42640... Proven optimal. Spheres in sphere 06.png
7 0.3859... 0.40231... Proven optimal. Spheres in sphere 07.png
8 0.3780... 0.43217... Proven optimal. Spheres in sphere 08.png
9 0.3660... 0.44134... Proven optimal. Spheres in sphere 09.png
10 0.3530... 0.44005... Proven optimal. Spheres in sphere 10.png
11 [math]\displaystyle{ \dfrac {\sqrt{5} - 3} {2} + \sqrt{5 - 2 \sqrt{5} } }[/math] 0.3445... 0.45003... Proven optimal. Spheres in sphere 11.png
12 [math]\displaystyle{ \dfrac {\sqrt{5} - 3} {2} + \sqrt{5 - 2 \sqrt{5} } }[/math] 0.3445... 0.49095... Proven optimal. Spheres in sphere 12.png

References