Chemistry:Carbonyl cyanide m-chlorophenyl hydrazone

From HandWiki
Revision as of 22:04, 5 February 2024 by Scavis (talk | contribs) (url)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Chemical compound


Carbonyl cyanide m-chlorophenyl hydrazone
Carbonyl cyanide m-chlorophenyl hydrazone.svg
Names
Preferred IUPAC name
N-(4-Chlorophenyl)carbonohydrazonoyl dicyanide
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
KEGG
MeSH CCCP
UNII
Properties
C9H5ClN4
Molar mass 204.616 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☑Y verify (what is ☑Y☒N ?)
Infobox references

Carbonyl cyanide m-chlorophenyl hydrazone (CCCP; also known as [(3-chlorophenyl)hydrazono]malononitrile) is a chemical inhibitor of oxidative phosphorylation. It is a nitrile, hydrazone and protonophore. In general, CCCP causes the gradual destruction of living cells and death of the organism,[1][2] although mild doses inducing partial decoupling have been shown to increase median and maximum lifespan in C. elegans models, suggesting a degree of hormesis.[3][4][5] CCCP causes an uncoupling of the proton gradient that is established during the normal activity of electron carriers in the electron transport chain. The chemical acts essentially as an ionophore and reduces the ability of ATP synthase to function optimally. It is routinely[6] used as an experimental uncoupling agent in cell and molecular biology, particularly in the study of mitophagy,[7] where it was integral in discovering the role of the Parkinson's disease-associated ubiquitin ligase Parkin.[7] Outside of its effects on mitochondria, CCCP may also disrupt lysosomal degradation during autophagy.[7][8]

See also

References

  1. J.W. Park; S.Y. Lee; J.Y. Yang; H.W. Rho; B.H. Park; S.N. Lim; J.S. Kim; H.R. Kim (1997). "Effect of carbonyl cyanide m-chlorophenylhydrazone (CCmCP) on the dimerization of lipoprotein lipase.". Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism 1344 (2): 132–8. doi:10.1016/s0005-2760(96)00146-4. PMID 9030190. 
  2. D. Gášková; B. Brodská; A. Holoubek; K. Sigler (1999). "Factors and processes involved in membrane potential build-up in yeast: diS-C3(3) assay". The International Journal of Biochemistry & Cell Biology 31 (5): 575–584. doi:10.1016/S1357-2725(99)00002-3. PMID 10399318. http://apps.isiknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=1&SID=S1OH84h3mBDFNnOFaen&page=1&doc=1&colname=WOS. 
  3. Lemire, Bernard D.; Behrendt, Maciej; DeCorby, Adrienne; Gášková, Dana (July 2009). "C. elegans longevity pathways converge to decrease mitochondrial membrane potential". Mechanisms of Ageing and Development 130 (7): 461–465. doi:10.1016/j.mad.2009.05.001. PMID 19442682. https://www.sciencedirect.com/science/article/pii/S0047637409000694. Retrieved 24 December 2021. 
  4. Parkhitko, Andrey A.; Filine, Elizabeth; Mohr, Stephanie E.; Moskalev, Alexey; Perrimon, Norbert (December 2020). "Targeting metabolic pathways for extension of lifespan and healthspan across multiple species". Ageing Research Reviews 64: 101188. doi:10.1016/j.arr.2020.101188. PMID 33031925. 
  5. Bárcena, Clea; Mayoral, Pablo; Quirós, Pedro M. (2018). "Mitohormesis, an Antiaging Paradigm". International Review of Cell and Molecular Biology 340: 35–77. doi:10.1016/bs.ircmb.2018.05.002. ISBN 9780128157367. PMID 30072093. https://www.sciencedirect.com/science/article/pii/S1937644818300522. Retrieved 24 December 2021. 
  6. Lin, Bo; Liu, Yunfan; Zhang, Xiaoping; Fan, Li; Shu, Yang; Wang, Jianhua (November 10, 2021). "Membrane-Activated Fluorescent Probe for High-Fidelity Imaging of Mitochondrial Membrane Potential". ACS Sensors 6 (11): 4009–4018. doi:10.1021/acssensors.1c01390. PMID 34757720. https://pubs.acs.org/doi/full/10.1021/acssensors.1c01390. Retrieved 24 December 2021. 
  7. 7.0 7.1 7.2 Georgakopoulos, Nikolaos D; Wells, Geoff; Campanella, Michelangelo (2017). "The pharmacological regulation of cellular mitophagy". Nature Chemical Biology 13 (2): 136–146. doi:10.1038/nchembio.2287. PMID 28103219. https://www.nature.com/articles/nchembio.2287. Retrieved 24 December 2021. 
  8. Padman, B.S.; Bach, M.; Lucarelli, G.; Prescott, M.; Ramm, G. (2013). "The protonophore CCCP interferes with lysosomal degradation of autophagic cargo in yeast and mammalian cells.". Autophagy 9 (11): 1862–1875. doi:10.4161/auto.26557. PMID 24150213. https://www.tandfonline.com/doi/full/10.4161/auto.26557. Retrieved 24 December 2021.