5-orthoplex honeycomb

From HandWiki
5-orthoplex honeycomb
(No image)
Type Hyperbolic regular honeycomb
Schläfli symbol {3,3,3,4,3}
Coxeter diagram CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel splitsplit1.pngCDel branch3.pngCDel node.png = CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
5-faces 5-cube t4.svg {3,3,3,4}
4-faces Schlegel wireframe 5-cell.png {3,3,3}
Cells Tetrahedron.png {3,3}
Faces Regular polygon 3 annotated.svg {3}
Cell figure Regular polygon 3 annotated.svg {3}
Face figure Hexahedron.png {4,3}
Edge figure Schlegel wireframe 24-cell.png {3,4,3}
Vertex figure Demitesseractic tetra hc.png {3,3,4,3}
Dual 24-cell honeycomb honeycomb
Coxeter group U5, [3,3,3,4,3]
Properties Regular

In the geometry of hyperbolic 5-space, the 5-orthoplex honeycomb is one of five paracompact regular space-filling tessellations (or honeycombs). It is paracompact because the fundamental domain of its symmetry group has finite volume. With Schläfli symbol {3,3,3,4,3}, it has three 5-orthoplexes around each cell. It is dual to the 24-cell honeycomb honeycomb.

Related honeycombs

Its vertex figure is the 16-cell honeycomb, {3,3,4,3}.

See also

  • List of regular polytopes

References

  • Coxeter, The Beauty of Geometry: Twelve Essays, Dover Publications, 1999 ISBN:0-486-40919-8 (Chapter 10: Regular honeycombs in hyperbolic space, Summary tables II, III, IV, V, p. 212-213)