Angular aperture
From HandWiki
The angular aperture of a lens is the angular size of the lens aperture as seen from the focal point:
- [math]\displaystyle{ a = 2 \arctan \left( \frac {D/2} {f} \right) = 2 \arctan \left( \frac {D} {2f} \right) }[/math]
where
- [math]\displaystyle{ f }[/math] is the focal length
- [math]\displaystyle{ D }[/math] is the diameter of the aperture.
Relation to numerical aperture
In a medium with an index of refraction close to 1, such as air, the angular aperture is approximately equal to twice the numerical aperture of the lens.[1]
Formally, the numerical aperture in air is:
- [math]\displaystyle{ \mathrm{NA} = \sin a/2 = \sin \arctan \left( \frac {D} {2 f} \right) }[/math]
In the paraxial approximation, with a small aperture, [math]\displaystyle{ D\lt f }[/math]:
- [math]\displaystyle{ \mathrm{NA} \approx a/2 }[/math]
References
- ↑ Albert Abraham Michelson (1995). Studies in Optics. Courier Dover. pp. 32. ISBN 0-486-68700-7. https://books.google.com/books?id=m2tUZ4_8WGMC&q=%22Angular+aperture%22&pg=PA32.
See also
- f-number
- Numerical aperture
- Acceptance angle, half the angular aperture
- Field of view
Original source: https://en.wikipedia.org/wiki/Angular aperture.
Read more |