Angular aperture

From HandWiki
The angular aperture of a thin lens with focal point at F and an aperture of diameter [math]\displaystyle{ D }[/math].

The angular aperture of a lens is the angular size of the lens aperture as seen from the focal point:

[math]\displaystyle{ a = 2 \arctan \left( \frac {D/2} {f} \right) = 2 \arctan \left( \frac {D} {2f} \right) }[/math]

where

[math]\displaystyle{ f }[/math] is the focal length
[math]\displaystyle{ D }[/math] is the diameter of the aperture.

Relation to numerical aperture

In a medium with an index of refraction close to 1, such as air, the angular aperture is approximately equal to twice the numerical aperture of the lens.[1]

Formally, the numerical aperture in air is:

[math]\displaystyle{ \mathrm{NA} = \sin a/2 = \sin \arctan \left( \frac {D} {2 f} \right) }[/math]

In the paraxial approximation, with a small aperture, [math]\displaystyle{ D\lt f }[/math]:

[math]\displaystyle{ \mathrm{NA} \approx a/2 }[/math]

References

See also