Astronomy:WD 0032−317

From HandWiki
Short description: White dwarf system with a hot brown dwarf
WD 0032−317
Observation data
Equinox J2000.0]] (ICRS)
Constellation Sagittarius
Right ascension  00h 34m 49.8573s
Declination −31° 29′ 52.686″
Characteristics
Evolutionary stage White dwarf
Astrometry
Parallax (π)2.320±0.053 mas
Distance431.1±9.8 pc
Orbit
PrimaryWD 0032−317
Details
WD 0032−317
Mass0.4187±0.0047 (He-core)
0.386±0.014 (Hybrid-core) M
Radius0.0266±0.0012 R
Temperature36965±100 K
WD 0032−317 b
Mass0.0812±0.0029 (He-core)
0.0750±0.0037 (Hybrid-core) M
Radius0.0789+0.0085
−0.0083
(He-core)
0.0747+0.0085
−0.0079
(Hybrid-core) R
Temperature5126±28 (He-core)
5111±41 (Hybrid-core) (equilibrium temperature) K
Other designations
WD 0032−317, MCT 0032-3146, EC 00323-3146, GALEX J003449.8-312952, 2MASS J00344984-3129524, TIC 251857373, USNO-B1.0 0585-00006922, Gaia DR3 2317319612801004416, Gaia DR2 2317319612801004416

WD 0032−317 is a low mass white dwarf star orbited by brown dwarf WD 0032−317 b.

WD 0032−317

The white dwarf WD 0032−317 is located about 1,400 light years from Earth.[1] It is notable for its extreme temperature. WD 0032−317 has 40% of the Sun's mass, but has a much higher temperature of 37,000 Kelvin, compared to the suns temperature of 5778 Kelvin.[inconsistent] WD 0032−317 formed about three billion years ago when a low mass star (possibly of 1.3 solar masses) expanded into its red giant phase. The star then blew out its outer layers leaving behind the helium-rich core (which is WD 0032−317).

WD 0032−317 b

The orbiting brown dwarf, WD 0032−317 b, was massive enough to survive the red giant's nova event.[2] It is an extremely hot and very large (75-88 Jupiter masses) brown dwarf that orbits WD 0032−317. One orbit from WD 0032−317 b takes only 2.5 hours. This object is tidally locked to its star with a day side temperature of 8,000 Kelvin and a night temperature of about 2000 Kelvin making its temperature equivalent to a planet orbiting close to a late stage B-type star. The intense ultraviolet (UV) exposure can break down the molecules in WD 0032−317's atmosphere and vaporize materials from the surface of the brown dwarf.[3][4][5]

References