Biology:Chemical cycling

From HandWiki
An example chemical cycle, a schematic representation of a Nitrogen cycle on Earth. This process results in the continual recycling of nitrogen gas involving the ocean.

Chemical cycling describes systems of repeated circulation of chemicals between other compounds, states and materials, and back to their original state, that occurs in space, and on many objects in space including the Earth. Active chemical cycling is known to occur in stars, many planets and natural satellites.

Chemical cycling plays a large role in sustaining planetary atmospheres, liquids and biological processes and can greatly influence weather and climate. Some chemical cycles release renewable energy, others may give rise to complex chemical reactions, organic compounds and prebiotic chemistry. On terrestrial bodies such as the Earth, chemical cycles involving the lithosphere are known as geochemical cycles. Ongoing geochemical cycles are one of the main attributes of geologically active worlds. A chemical cycle involving a biosphere is known as a biogeochemical cycle.

The Sun, other stars and star systems

In most hydrogen-fusing stars, including the Sun, a chemical cycle involved in stellar nucleosynthesis occurs which is known as a carbon-nitrogen-oxygen or (CNO cycle). In addition to this cycle, stars also have a helium cycle.[1] Various cycles involving gas and dust have been found to occur in galaxies.[2]

Venus

The majority of known chemical cycles on Venus involve its dense atmosphere and compounds of carbon and sulphur, the most significant being a strong carbon dioxide cycle.[3] The lack of a complete carbon cycle including a geochemical carbon cycle, for example, is thought to be a cause of its runaway greenhouse effect, due to the lack of a substantial carbon sink.[4] Sulphur cycles including sulphur oxide cycles also occur, sulphur oxide in the upper atmosphere and results in the presence of sulfuric acid[5] in turn returns to oxides through photolysis.[6] Indications also suggest an ozone cycle on Venus similar to that of Earth's.[7]

Earth

Earth's water cycle.

A number of different types of chemical cycles geochemical cycles occur on Earth. Biogeochemical cycles play an important role in sustaining the biosphere. Notable active chemical cycles on Earth include:

Other chemical cycles include hydrogen peroxide.[9]

Mars

Possible sources of a hypothesized Martian Methane cycle.

Recent evidence suggests that similar chemical cycles to Earth's occur on a lesser scale on Mars, facilitated by the thin atmosphere, including carbon dioxide (and possibly carbon),[10] water,[11] sulphur,[12] methane,[13] oxygen,[14] ozone,[15] and nitrogen[16] cycles. Many studies point to significantly more active chemical cycles on Mars in the past, however the faint young Sun paradox has proved problematic in determining chemical cycles involved in early climate models of the planet.[17]

Jupiter

Jupiter's gas toruses generated by Io (green) and Europa (blue)

Jupiter, like all the gas giants, has an atmospheric methane cycle.[18] Recent studies indicate a hydrological cycle of water-ammonia vastly different to the type operating on terrestrial planets like Earth[18] and also a cycle of hydrogen sulfide.[19]

Significant chemical cycles exist on Jupiter's moons. Recent evidence points to Europa possessing several active cycles, most notably a water cycle.[20] Other studies suggest an oxygen[21] and radiation induced carbon dioxide[18] cycle. Io and Europa, appear to have radiolytic sulphur cycles involving their lithospheres.[22] In addition, Europa is thought to have a sulfur dioxide cycle.[18] In addition, the Io plasma torus contributes to a sulphur cycle on Jupiter and Ganymede.[23] Studies also imply active oxygen cycles on Ganymede[24] and oxygen and radiolytic carbon dioxide cycles on Callisto.[18]

Saturn

A graph depicting mechanisms of Titan's methanological cycle.

In addition to Saturn's methane cycle[18] some studies suggest an ammonia cycle induced by photolysis similar to Jupiter's.[25]

The cycles of its moons are of particular interest. Observations by Cassini–Huygens of Titan's atmosphere and interactions with its liquid mantle give rise to several active chemical cycles including a methane,[26] hydrocarbon,[27] hydrogen,[28] and carbon[29] cycles. Enceladus has an active hydrological, silicate and possibly a nitrogen cycle.[30][31]

Uranus

Uranus has an active methane cycle.[32] Methane is converted to hydrocarbons through photolysis which condenses and as they are heated, release methane which rises to the upper atmosphere.

Studies by Grundy et al. (2006) indicate active carbon cycles operates on Titania, Umbriel and Ariel and Oberon through the ongoing sublimation and deposition of carbon dioxide, though some is lost to space over long periods of time.[33]

Neptune

Neptune's internal heat and convection drives cycles of methane,[18] carbon,[34] and a combination of other volatiles within Triton's lithosphere.[35]

Models predicted the presence of seasonal nitrogen cycles on the moon Triton,[36] however this has not been supported by observations to date.

Pluto-Charon system

Models predict a seasonal nitrogen cycle on Pluto[37] and observations by New Horizons appear to support this.

References

  1. Vladimir E. Fortov (26 December 2015). Extreme States of Matter: High Energy Density Physics. Springer. pp. 97–. ISBN 978-3-319-18953-6. https://books.google.com/books?id=xohNCwAAQBAJ&pg=PA97. 
  2. Palouš, Jan (2007). "Star – Gas Cycle in Galaxies". Proceedings of the International Astronomical Union 2 (S235): 268–270. doi:10.1017/S1743921306006569. ISSN 1743-9213. Bibcode2007IAUS..235..268P. 
  3. Mills, Franklin P.; Allen, Mark (2007). "A review of selected issues concerning the chemistry in Venus' middle atmosphere". Planetary and Space Science 55 (12): 1729–1740. doi:10.1016/j.pss.2007.01.012. ISSN 0032-0633. Bibcode2007P&SS...55.1729M. 
  4. Nick Strobel. "Venus". http://home.case.edu/~sjr16/venus.html. 
  5. Jessup, Kandis Lea; Marcq, Emmanuel; Mills, Franklin; Mahieux, Arnaud; Limaye, Sanjay; Wilson, Colin; Allen, Mark; Bertaux, Jean-Loup et al. (2015). "Coordinated Hubble Space Telescope and Venus Express Observations of Venus' upper cloud deck". Icarus 258: 309–336. doi:10.1016/j.icarus.2015.05.027. ISSN 0019-1035. Bibcode2015Icar..258..309J. https://ora.ox.ac.uk/objects/uuid:e49b5b54-a258-488d-9063-d510ade36baa. 
  6. Zhang, Xi; Liang, Mao-Chang; Montmessin, Franck; Bertaux, Jean-Loup; Parkinson, Christopher; Yung, Yuk L. (2010). "Photolysis of sulphuric acid as the source of sulphur oxides in the mesosphere of Venus". Nature Geoscience 3 (12): 834–837. doi:10.1038/ngeo989. ISSN 1752-0894. Bibcode2010NatGe...3..834Z. https://authors.library.caltech.edu/21480/2/ngeo989-s1.pdf. 
  7. Montmessin, F.; Bertaux, J.-L.; Lefèvre, F.; Marcq, E.; Belyaev, D.; Gérard, J.-C.; Korablev, O.; Fedorova, A. et al. (2011). "A layer of ozone detected in the nightside upper atmosphere of Venus". Icarus 216 (1): 82–85. doi:10.1016/j.icarus.2011.08.010. ISSN 0019-1035. Bibcode2011Icar..216...82M. https://orbi.uliege.be/bitstream/2268/100136/1/Montmessin_O3.pdf. 
  8. Berner, Robert; Lasaga, Antonio; Garrels, Robert (September 1983). "The Carbonate-Silicate Geochemical Cycle and its Effect on Atmospheric Carbon Dioxide over the Past 100 Million Years". American Journal of Science 283 (7): 641–683. doi:10.2475/ajs.283.7.641. Bibcode1983AmJS..283..641B. http://shadow.eas.gatech.edu/~jean/paleo/Berner_1983.pdf. Retrieved Feb 3, 2015. 
  9. Allen, Nicholas D.C.; González Abad, Gonzalo; Bernath, Peter F.; Boone, Chris D. (2013). "Satellite observations of the global distribution of hydrogen peroxide (H2O2) from ACE". Journal of Quantitative Spectroscopy and Radiative Transfer 115: 66–77. doi:10.1016/j.jqsrt.2012.09.008. ISSN 0022-4073. Bibcode2013JQSRT.115...66A. 
  10. Edwards, Christopher S.; Ehlmann, Bethany L. (2015). "Carbon sequestration on Mars". Geology 43 (10): 863–866. doi:10.1130/G36983.1. ISSN 0091-7613. Bibcode2015Geo....43..863E. https://resolver.caltech.edu/CaltechAUTHORS:20150827-175842753. 
  11. Machtoub, G. (2012). "Modeling the hydrological cycle on Mars". Journal of Advances in Modeling Earth Systems 4 (1): M03001. doi:10.1029/2011MS000069. ISSN 1942-2466. Bibcode2012JAMES...4.3001M. 
  12. King, P. L.; McLennan, S. M. (2010). "Sulfur on Mars". Elements 6 (2): 107–112. doi:10.2113/gselements.6.2.107. ISSN 1811-5209. 
  13. Wray, James J.; Ehlmann, Bethany L. (2011). "Geology of possible Martian methane source regions". Planetary and Space Science 59 (2–3): 196–202. doi:10.1016/j.pss.2010.05.006. ISSN 0032-0633. Bibcode2011P&SS...59..196W. 
  14. Farquhar, James; Thiemens, Mark H. (2000). "Oxygen cycle of the Martian atmosphere-regolith system: Δ17O of secondary phases in Nakhla and Lafayette". Journal of Geophysical Research: Planets 105 (E5): 11991–11997. doi:10.1029/1999JE001194. ISSN 0148-0227. Bibcode2000JGR...10511991F. 
  15. Montmessin, Franck; Lefèvre, Franck (2013). "Transport-driven formation of a polar ozone layer on Mars". Nature Geoscience 6 (11): 930–933. doi:10.1038/ngeo1957. ISSN 1752-0894. Bibcode2013NatGe...6..930M. 
  16. Boxe, C.S.; Hand, K.P.; Nealson, K.H.; Yung, Y.L.; Saiz-Lopez, A. (2012). "An active nitrogen cycle on Mars sufficient to support a subsurface biosphere". International Journal of Astrobiology 11 (2): 109–115. doi:10.1017/S1473550411000401. ISSN 1473-5504. Bibcode2012IJAsB..11..109B. https://resolver.caltech.edu/CaltechAUTHORS:20120420-091645136. 
  17. Wordsworth, R.; Forget, F.; Millour, E.; Head, J.W.; Madeleine, J.-B.; Charnay, B. (2013). "Global modelling of the early martian climate under a denser CO2 atmosphere: Water cycle and ice evolution". Icarus 222 (1): 1–19. doi:10.1016/j.icarus.2012.09.036. ISSN 0019-1035. Bibcode2013Icar..222....1W. 
  18. 18.0 18.1 18.2 18.3 18.4 18.5 18.6 Fran Bagenal; Timothy E. Dowling; William B. McKinnon (5 March 2007). Jupiter: The Planet, Satellites and Magnetosphere. Cambridge University Press. pp. 138–. ISBN 978-0-521-03545-3. https://books.google.com/books?id=aMERHqj9ivcC&pg=PA138. 
  19. Palotai, Csaba; Dowling, Timothy E.; Fletcher, Leigh N. (2014). "3D Modeling of interactions between Jupiter's ammonia clouds and large anticyclones". Icarus 232: 141–156. doi:10.1016/j.icarus.2014.01.005. ISSN 0019-1035. Bibcode2014Icar..232..141P. 
  20. Kattenhorn, Simon A.; Prockter, Louise M. (2014). "Evidence for subduction in the ice shell of Europa". Nature Geoscience 7 (10): 762–767. doi:10.1038/ngeo2245. ISSN 1752-0894. Bibcode2014NatGe...7..762K. 
  21. Hand, Kevin P.; Chyba, Christopher F.; Carlson, Robert W.; Cooper, John F. (2006). "Clathrate Hydrates of Oxidants in the Ice Shell of Europa". Astrobiology 6 (3): 463–482. doi:10.1089/ast.2006.6.463. ISSN 1531-1074. PMID 16805702. Bibcode2006AsBio...6..463H. 
  22. Battaglia, Steven M.; Stewart, Michael A.; Kieffer, Susan W. (June 2014). "Io's theothermal (sulfur) – Lithosphere cycle inferred from sulfur solubility modeling of Pele's magma supply". Icarus 235: 123–129. doi:10.1016/j.icarus.2014.03.019. Bibcode2014Icar..235..123B. 
  23. Cheng, Andrew F. (1984). "Escape of sulfur and oxygen from Io". Journal of Geophysical Research 89 (A6): 3939. doi:10.1029/JA089iA06p03939. ISSN 0148-0227. Bibcode1984JGR....89.3939C. 
  24. Vidal, RA; Bahr, D; Baragiola, RA; Peters, M (1997). "Oxygen on Ganymede: laboratory studies". Science 276 (5320): 1839–42. doi:10.1126/science.276.5320.1839. PMID 9188525. Bibcode1997Sci...276.1839V. 
  25. West, R. A.; Baines, K. H.; Karkoschka, E.; Sánchez-Lavega, A. (2009). "Clouds and Aerosols in Saturn's Atmosphere". Saturn from Cassini-Huygens. pp. 161–179. doi:10.1007/978-1-4020-9217-6_7. ISBN 978-1-4020-9216-9. Bibcode2009sfch.book..161W. 
  26. Atreya, Sushil K.; Adams, Elena Y.; Niemann, Hasso B.; Demick-Montelara, Jaime E.; Owen, Tobias C.; Fulchignoni, Marcello; Ferri, Francesca; Wilson, Eric H. (2006). "Titan's methane cycle". Planetary and Space Science 54 (12): 1177–1187. doi:10.1016/j.pss.2006.05.028. ISSN 0032-0633. Bibcode2006P&SS...54.1177A. 
  27. Tobie, G.; Choukroun, M.; Grasset, O.; Le Mouelic, S.; Lunine, Jonathan I.; Sotin, C.; Bourgeois, O.; Gautier, D. et al. (2009). "Evolution of Titan and implications for its hydrocarbon cycle". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367 (1889): 617–631. doi:10.1098/rsta.2008.0246. ISSN 1364-503X. PMID 19073458. Bibcode2009RSPTA.367..617T. 
  28. Lebonnois, S.ébastien; Bakes, E.L.O.; McKay, Christopher P. (2003). "Atomic and molecular hydrogen budget in Titan's atmosphere". Icarus 161 (2): 474–485. doi:10.1016/S0019-1035(02)00039-8. ISSN 0019-1035. Bibcode2003Icar..161..474L. 
  29. Choukroun, M.; Sotin, C. (2012). "Is Titan's shape caused by its meteorology and carbon cycle?". Geophysical Research Letters 39 (4): n/a. doi:10.1029/2011GL050747. ISSN 0094-8276. Bibcode2012GeoRL..39.4201C. 
  30. Parkinson, C. D.; Liang, M.-C.; Hartman, H.; Hansen, C. J.; Tinetti, G.; Meadows, V.; Kirschvink, J. L.; Yung, Y. L. (2007). "Enceladus: Cassini observations and implications for the search for life". Astronomy and Astrophysics 463 (1): 353–357. doi:10.1051/0004-6361:20065773. ISSN 0004-6361. Bibcode2007A&A...463..353P. http://authors.library.caltech.edu/7778/1/PARaanda07.pdf. 
  31. Parkinson, Christopher D.; Liang, Mao-Chang; Yung, Yuk L.; Kirschivnk, Joseph L. (2008). "Habitability of Enceladus: Planetary Conditions for Life". Origins of Life and Evolution of Biospheres 38 (4): 355–369. doi:10.1007/s11084-008-9135-4. ISSN 0169-6149. PMID 18566911. Bibcode2008OLEB...38..355P. 
  32. Richard Schmude Jr. (29 June 2009). Uranus, Neptune, and Pluto and How to Observe Them. Springer Science & Business Media. pp. 67–. ISBN 978-0-387-76602-7. https://books.google.com/books?id=47azIwooFqEC&pg=PA67. 
  33. Grundy, W. M.; Young, L. A.; Spencer, J. R.; Johnson, R. E.; Young, E. F.; Buie, M. W. (October 2006). "Distributions of H2O and CO2 ices on Ariel, Umbriel, Titania, and Oberon from IRTF/SpeX observations". Icarus 184 (2): 543–555. doi:10.1016/j.icarus.2006.04.016. Bibcode2006Icar..184..543G. 
  34. Dale P. Cruikshank; Mildred Shapley Matthews; A. M. Schumann (1995). Neptune and Triton. University of Arizona Press. pp. 500–. ISBN 978-0-8165-1525-7. https://books.google.com/books?id=My8J0G3R1-4C&pg=PA500. 
  35. Steven M. Battaglia (2013). Volatile-Lithosphere Recycling of Outer Icy Satellites and Trans-Neptunian Objects Inferred from Thermal Gradient Modeling of Triton's Ice Shell. Geological Society of America. https://gsa.confex.com/gsa/2013AM/webprogram/Paper224702.html. 
  36. Hansen, Candice J.; Paige, David A. (1992). "A thermal model for the seasonal nitrogen cycle on Triton". Icarus 99 (2): 273–288. doi:10.1016/0019-1035(92)90146-X. ISSN 0019-1035. Bibcode1992Icar...99..273H. 
  37. Hansen, Candice J.; Paige, David A. (1996). "Seasonal Nitrogen Cycles on Pluto". Icarus 120 (2): 247–265. doi:10.1006/icar.1996.0049. ISSN 0019-1035. Bibcode1996Icar..120..247H.