Biology:Euarchonta

From HandWiki
Short description: Mammal grandorder containing treeshrews, colugos, and primates

Euarchonta
Temporal range: Upper Cretaceous – Recent, 88–0 Ma
Euarchonta.jpg
Euarchonts: upper left: Plesiadapis, upper right: northern treeshrew, lower left: Sunda flying lemur and lower right: yellow baboon
Scientific classification e
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Superorder: Euarchontoglires
Grandorder: Euarchonta
Waddell et al. 1999
Subgroups

The Euarchonta are a proposed grandorder of mammals: the order Scandentia (treeshrews), and its sister Primatomorpha mirorder, containing the Dermoptera or colugos and the primates (Plesiadapiformes and descendants).

The term "Euarchonta"[1] (meaning "true rulers") appeared in 1999, when molecular evidence suggested that the morphology-based Archonta should be trimmed down to exclude Chiroptera.[2] Further DNA sequence analyses[3][4][5] supported the Euarchonta hypothesis. Despite multiple papers pointing out that some mitochondrial sequences showed unusual properties (particularly murid rodents and hedgehogs) and were likely distorting the overall tree,[6][7] and despite earlier studies[5] showing near total congruence of mtDNA-based and nuclear-based trees when such sequences were excluded, some authors continued to produce misleading trees.[8] A study investigating retrotransposon presence/absence data has claimed strong support for Euarchonta.[9] Some interpretations of the molecular data link Primates and Dermoptera in a clade (mirorder) known as Primatomorpha, which is the sister of Scandentia. In some, the Dermoptera are a member of the primates rather than a sister group. Other interpretations link the Dermoptera and Scandentia together in a group called Sundatheria as the sister group of the primates.

Euarchonta and Glires together form the Euarchontoglires, one of the four Eutherian clades.

The current hypothesis, based on molecular clock evidence, suggests that the Euarchonta arose in the late Cretaceous period, about 88 million years ago, and diverged 86.2 million years ago into the groups of tree shrews and Primatomorpha. The latter diverged prior to 79.6 million years into the orders of Primates and colugos.[10] The earliest fossil species often ascribed to Euarchonta (Purgatorius coracis) dates to the early Paleocene, 65 million years ago,[11] but one study claims it to be a non-placental eutherian.[12] Although it is known that Scandentia is one of the most basal Euarchontoglire clades, the exact phylogenetic position is not yet considered resolved, and it may be a sister of Glires, Primatomorpha or Dermoptera or to all other Euarchontoglires.[13][14][15][16]

Euarchontoglires
Glires

Lagomorpha (rabbits, hares, pikas)

Rodentia (rodents)

Euarchonta

Scandentia (treeshrews)

Primatomorpha

Dermoptera (colugos)

Primates (†Plesiadapiformes, Strepsirrhini, Haplorrhini)

References

  1. Waddell, P.J.; Cao, Y.; Hasegawa, M.; Mindell, D.P. (1999a). "Assessing the Cretaceous superordinal divergence times within birds and placental mammals using whole mitochondrial protein sequences and an extended statistical framework". Systematic Biology 48 (1): 119–137. doi:10.1080/106351599260481. PMID 12078636. 
  2. Waddell, P.J.; Okada, N.; Hasegawa (1999b). "Towards resolving the interordinal relationships of placental mammals". Systematic Biology 48 (1): 1–5. doi:10.1093/sysbio/48.1.1. PMID 12078634. 
  3. Madsen, O.; Scally, M.; Douady, C.J.; Kao, D.J.; DeBry, R.W.; Adkins, R.; Amrine, H.M.; Stanhope, M.J. et al. (2001). "Parallel adaptive radiations in two major clades of placental mammals". Nature 409 (6820): 610–614. doi:10.1038/35054544. PMID 11214318. 
  4. Murphy, W. J.; Eizirik, E.; Johnson, W. E.; Zhang, Y. P.; Ryder, O. A.; O'Brien, S. J. (2001a). "Molecular phylogenetics and the origins of placental mammals". Nature 409 (6820): 614–618. doi:10.1038/35054550. PMID 11214319. 
  5. 5.0 5.1 Waddell, P.J.; Kishino, H.; Ota, R. (2001). "A phylogenetic foundation for comparative mammalian genomics". Genome Informatics Series 12: 141–154. PMID 11791233. 
  6. Sullivan1997>Sullivan, J.; Swofford, D. L. (1997). "Are guinea pigs rodents? The importance of adequate models in molecular phylogenetics". Journal of Mammalian Evolution 4 (2): 77–86. doi:10.1023/A:1027314112438. https://link.springer.com/article/10.1023%2FA%3A1027314112438. 
  7. Waddell, P. J.; Cao, Y.; Hauf, J.; Hasegawa, M. (1999c). "Using novel phylogenetic methods to evaluate mammalian mtDNA, including AA invariant sites-LogDet plus site stripping, to detect internal conflicts in the data, with special reference to the position of hedgehog, armadillo, and elephant". Systematic Biology 48 (1): 31–53. doi:10.1080/106351599260427. PMID 12078643. 
  8. Arnason, Ulfur (2002). "Mammalian mitogenomic relationships and the root of the eutherian tree". Proceedings of the National Academy of Sciences 99 (12): 8151–8156. doi:10.1073/pnas.102164299. PMID 12034869. Bibcode2002PNAS...99.8151A. 
  9. Ole Kriegs, Jan; Churakov, Gennady; Jurka, Jerzy; Brosius, Jürgen; Schmitz, Jürgen (2007). "Evolutionary history of 7SL RNA-derived SINEs in Supraprimates". Trends in Genetics 23 (4): 158–161. doi:10.1016/j.tig.2007.02.002. PMID 17307271. http://zmbe2.uni-muenster.de/expath/articles/31_Kriegs_TiG.pdf. 
  10. Janecka, Jan E.; Miller, Webb; Pringle, Thomas H.; Wiens, Frank; Zitzmann, Annette; Helgen, Kristofer M.; Springer, Mark S.; Murphy, William J. (2007). "Molecular and Genomic Data Identify the Closest Living Relative of Primates.". Science 318 (5851): 792–794. doi:10.1126/science.1147555. PMID 17975064. Bibcode2007Sci...318..792J. http://www.bx.psu.edu/miller_lab/dist/flying_lemur.pdf. 
  11. O'Leary, M. A.; Bloch, J. I.; Flynn, J. J.; Gaudin, T. J.; Giallombardo, A.; Giannini, N. P.; Cirranello, A. L. (2013). "The placental mammal ancestor and the post–K-Pg radiation of placentals". Science 339 (6120): 662–667. doi:10.1126/science.1229237. PMID 23393258. Bibcode2013Sci...339..662O. 
  12. Halliday, Thomas J. D.; Upchurch, Paul; Goswami, Anjali (2017). "Resolving the relationships of Paleocene placental mammals". Biological Reviews 92 (1): 521–550. doi:10.1111/brv.12242. PMID 28075073. PMC 6849585. http://discovery.ucl.ac.uk/1473028/1/Halliday_et_al-Biological_Reviews.pdf. 
  13. Foley, Nicole M.; Springer, Mark S.; Teeling, Emma C. (2016-07-19). "Mammal madness: is the mammal tree of life not yet resolved?" (in en). Phil. Trans. R. Soc. B 371 (1699): 20150140. doi:10.1098/rstb.2015.0140. ISSN 0962-8436. PMID 27325836. 
  14. Kumar, Vikas; Hallström, Björn M.; Janke, Axel (2013-04-01). "Coalescent-Based Genome Analyses Resolve the Early Branches of the Euarchontoglires". PLOS ONE 8 (4): e60019. doi:10.1371/journal.pone.0060019. ISSN 1932-6203. PMID 23560065. Bibcode2013PLoSO...860019K. 
  15. Zhou, Xuming; Sun, Fengming; Xu, Shixia; Yang, Guang; Li, Ming (2015-03-01). "The position of tree shrews in the mammalian tree: Comparing multi-gene analyses with phylogenomic results leaves monophyly of Euarchonta doubtful" (in en). Integrative Zoology 10 (2): 186–198. doi:10.1111/1749-4877.12116. ISSN 1749-4877. PMID 25311886. 
  16. Meredith, Robert W.; Janečka, Jan E.; Gatesy, John; Ryder, Oliver A.; Fisher, Colleen A.; Teeling, Emma C.; Goodbla, Alisha; Eizirik, Eduardo et al. (2011-10-28). "Impacts of the Cretaceous Terrestrial Revolution and KPg Extinction on Mammal Diversification" (in en). Science 334 (6055): 521–524. doi:10.1126/science.1211028. ISSN 0036-8075. PMID 21940861. Bibcode2011Sci...334..521M. 

External links

Wikidata ☰ Q728566 entry