Biology:Euarchontoglires

From HandWiki
Short description: Superorder of mammals

Euarchontoglires
Temporal range: Paleocene–Present
Euarchontoglires 1.jpg
From top to bottom (left): rat, treeshrew, colugo; (right) hare, macaque with human.
Scientific classification e
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Magnorder: Boreoeutheria
Superorder: Euarchontoglires
Murphy et al., 2001[1]
Subgroups

Euarchontoglires (from: Euarchonta ("true rulers") + Glires ("dormice")), synonymous with Supraprimates, is a clade and a superorder of mammals, the living members of which belong to one of the five following groups: rodents, lagomorphs, treeshrews, primates, and colugos.

Evolutionary affinities within mammals

Phylogenetic position of Euarchontoglires (in blue) among placentals in a genus-level molecular phylogeny of 116 extant mammals inferred from the gene tree information of 14,509 coding DNA sequences.[3] The other major clades are colored: marsupials (magenta), xenarthrans (orange), afrotherians (red), and laurasiatherians (green).

The Euarchontoglires clade is based on DNA sequence analyses and retrotransposon markers that combine the clades Glires (Rodentia + Lagomorpha) and Euarchonta (Scandentia + Primates + Dermoptera).[1] It is usually discussed without a taxonomic rank but has been called a cohort, magnorder, or superorder. Relations among the four cohorts (Euarchontoglires, Xenarthra, Laurasiatheria, Afrotheria) and the identity of the placental root remain controversial.[4][5]

So far, few, if any, distinctive anatomical features have been recognized that support Euarchontoglires; nor does any strong evidence from anatomy support alternative hypotheses.[citation needed] Although both Euarchontoglires and diprotodont marsupials are documented to possess a vermiform appendix, this feature evolved as a result of convergent evolution.[6]

Euarchontoglires probably split from the Boreoeutheria magnorder about 85 to 95 million years ago, during the Cretaceous, and developed in the Laurasian island group that would later become Europe.[citation needed] This hypothesis is supported by molecular evidence; so far, the earliest known fossils date to the early Paleocene.[7] The combined clade of Euarchontoglires and Laurasiatheria is recognized as Boreoeutheria.[citation needed]

Phylogenetic relationships within the clade

The hypothesized relationship among the Euarchontoglires is as follows:[8]

Boreoeutheria

Laurasiatheria

Euarchontoglires
Glires

Lagomorpha (rabbits, hares, pikas) Lepus timidus - 1700-1880 - Print - Iconographia Zoologica -(white background).jpg

Rodentia (rodents) Ruskea rotta.png

Euarchonta

Scandentia (treeshrews or banxrings) Die Säugthiere in Abbildungen nach der Natur, mit Beschreibungen (Plate 34) (white background).jpg

Primatomorpha

Dermoptera (colugos) Cynocephalus volans Brehm1883 (white background).jpg

Primates File:Cynocephalus doguera - 1700-1880 - Print - Iconographia Zoologica - Special Collections University of Amsterdam - (white background).tiff

One study based on DNA analysis suggests that Scandentia and Primates are sister clades, but does not discuss the position of Dermoptera.[9] Although it is known that Scandentia is one of the most basal Euarchontoglires clades, the exact phylogenetic position is not yet considered resolved, and it may be a sister of Glires, Primatomorpha or Dermoptera or to all other Euarchontoglires.[10][5][11] Some old studies place Scandentia as sister of the Glires, invalidating Euarchonta.[12][13]

Whole-genome duplication may have taken place in the ancestral Euarchontoglires.[14]

References

  1. 1.0 1.1 Murphy, William J.; Eizirik, Eduardo; O'Brien, Stephen J.; Madsen, Ole; Scally, Mark; Douady, Christophe J.; Teeling, Emma; Ryder, Oliver A. et al. (2001). "Resolution of the early placental mammal radiation using Bayesian phylogenetics". Science 294 (5550): 2348–2351. doi:10.1126/science.1067179. PMID 11743200. 
  2. "Asian gliriform origin for arctostylopid mammals". Naturwissenschaften 93 (8): 407–411. 2006. doi:10.1007/s00114-006-0122-1. PMID 16865388. https://biblio.ugent.be/publication/353125. 
  3. "OrthoMaM v10: Scaling-up orthologous coding sequence and exon alignments with more than one hundred mammalian genomes". Molecular Biology and Evolution 36 (4): 861–862. April 2019. doi:10.1093/molbev/msz015. PMID 30698751. 
  4. Asher, RJ; Bennett, N; Lehmann, T (2009). "The new framework for understanding placental mammal evolution". BioEssays 31 (8): 853–864. doi:10.1002/bies.200900053. PMID 19582725. 
  5. 5.0 5.1 Kumar, Vikas; Hallström, Björn M.; Janke, Axel (2013-04-01). "Coalescent-Based Genome Analyses Resolve the Early Branches of the Euarchontoglires". PLOS ONE 8 (4): e60019. doi:10.1371/journal.pone.0060019. ISSN 1932-6203. PMID 23560065. 
  6. Smith, H. F.; Fisher, R. E.; Everett, M. L.; Thomas, A. D.; Randal-Bollinger, R.; Parker, W. (October 2009). "Comparative anatomy and phylogenetic distribution of the mammalian cecal appendix". Journal of Evolutionary Biology 22 (10): 1984–1999. doi:10.1111/j.1420-9101.2009.01809.x. PMID 19678866. 
  7. O'Leary, M. A.; Bloch, J. I.; Flynn, J. J.; Gaudin, T. J.; Giallombardo, A.; Giannini, N. P.; Cirranello, A. L. (2013). "The placental mammal ancestor and the post–K-Pg radiation of placentals". Science 339 (6120): 662–667. doi:10.1126/science.1229237. PMID 23393258. 
  8. Esselstyn, Jacob A.; Oliveros, Carl H.; Swanson, Mark T.; Faircloth, Brant C. (2017-08-26). "Investigating Difficult Nodes in the Placental Mammal Tree with Expanded Taxon Sampling and Thousands of Ultraconserved Elements". Genome Biology and Evolution 9 (9): 2308–2321. doi:10.1093/gbe/evx168. PMID 28934378. 
  9. "Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model". Proceedings of the National Academy of Sciences 109 (37): 14942–7. 2012. doi:10.1073/pnas.1211733109. PMID 22930817. 
  10. Foley, Nicole M.; Springer, Mark S.; Teeling, Emma C. (2016-07-19). "Mammal madness: Is the mammal tree of life not yet resolved?". Philosophical Transactions of the Royal Society B 371 (1699): 20150140. doi:10.1098/rstb.2015.0140. ISSN 0962-8436. PMID 27325836. 
  11. Zhou, Xuming; Sun, Fengming; Xu, Shixia; Yang, Guang; Li, Ming (2015-03-01). "The position of tree shrews in the mammalian tree: Comparing multi-gene analyses with phylogenomic results leaves monophyly of Euarchonta doubtful". Integrative Zoology 10 (2): 186–198. doi:10.1111/1749-4877.12116. ISSN 1749-4877. PMID 25311886. 
  12. Meredith, Robert W.; Janečka, Jan E.; Gatesy, John; Ryder, Oliver A.; Fisher, Colleen A.; Teeling, Emma C.; Goodbla, Alisha; Eizirik, Eduardo et al. (2011-10-28). "Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification". Science 334 (6055): 521–524. doi:10.1126/science.1211028. ISSN 0036-8075. PMID 21940861. 
  13. Zhou, Xuming; Sun, Fengming; Xu, Shixia; Yang, Guang; Li, Ming (2015-03-01). "The position of tree shrews in the mammalian tree: Comparing multi-gene analyses with phylogenomic results leaves monophyly of Euarchonta doubtful". Integrative Zoology 10 (2): 186–198. doi:10.1111/1749-4877.12116. ISSN 1749-4877. PMID 25311886. 
  14. Dehal, Paramvir; Boore, Jeffrey L. (2005-09-06). "Two Rounds of Whole Genome Duplication in the Ancestral Vertebrate". PLOS Biology 3 (10): e314. doi:10.1371/journal.pbio.0030314. ISSN 1545-7885. PMID 16128622. 

Further reading

Wikidata ☰ Q471797 entry