Biology:Lacticaseibacillus casei
Lacticaseibacillus casei | |
---|---|
Lactobacillus casei in a Petri dish | |
Scientific classification | |
Domain: | Bacteria |
Phylum: | Bacillota |
Class: | Bacilli |
Order: | Lactobacillales |
Family: | Lactobacillaceae |
Genus: | Lacticaseibacillus |
Species: | L. casei
|
Binomial name | |
Lacticaseibacillus casei (Orla-Jensen 1916) Zheng et al. 2020
| |
Synonyms | |
|
Lacticaseibacillus casei is an organism that belongs to the largest genus in the family Lactobacillaceae, a lactic acid bacteria (LAB), that was previously classified as Lactobacillus casei.[1] This bacteria has been identified as facultatively anaerobic or microaerophilic, acid-tolerant, non-spore-forming bacteria.
This species is a non-sporing, rod-shaped, gram positive microorganism that can be found within the reproductive and digestive tract of the human body.[2] Since L. casei can survive in a variety of environmental habitats, it has and continues to be extensively studied by health scientists. Commercially, L. casei is used in fermenting dairy products and its application as a probiotic.[3]
Taxonomy
The taxonomy of the L. casei group has been debated for several years because researchers struggled to differentiate between the strains of L. casei and L. paracasei using methods of traditional bacteriology, i.e. phenotypic, physiological, and biochemical similarities. In the 1990s, researchers began to realize that the type strain for L. casei, ATCC 393, does not quite match most other strains classified as "L. casei" by then. To solve this discrapency, Dellaglio et al. argued to simply replace the type with ATCC 334, which is closer to these "other strains", and to bury the name "L. paracasei". This argument was not accepted by the ICSP, which ruled in 1994[4] and 2008 that the type strain should not be changed. ICSP also mentions that ATCC 334 is a strain of L. paracasei, meaning that it's the aforementioned "other strains" that need to be moved to paracasei.[5]
The next major event in taxonomic revision came with Zheng et al. 2020, which split Lactobacillus into several genera on phylogenomic grounds. L. casei was made the type species of Lacticaseibacillus, containing more than 20 species.[2]
As of December 2023, the accepted taxonomy under the species complex is as follows:[6][7]
- Lacticaseibacillus casei (Orla-Jensen 1916) Zheng et al. 2020
- Lactobacillus casei subsp. pseudoplantarum Abo-Elnaga and Kandler 1965 (Approved Lists 1980) was not adjusted by Zheng, but remains valid. It is, however, phylogenomically problematic: the type strain is classified by ATCC, JCM, and BCCM as L. paracasei subsp. paracasei.[8]
- Lacticaseibacillus chiayiensis (Huang et al. 2018) Zheng et al. 2020
- Lacticaseibacillus paracasei (Collins et al. 1989) Zheng et al. 2020
- Lacticaseibacillus paracasei subsp. paracasei (Collins et al. 1989) Zheng et al. 2020
- Lacticaseibacillus paracasei subsp. tolerans (Abo-Elnaga and Kandler 1965) Zheng et al. 2020
- Lacticaseibacillus rhamnosus (Hansen 1968) Zheng et al. 2020
- Lactobacillus zeae (Dicks et al. 1996 ex Kuznetsov 1959) Liu and Gu 2020
Uses
Dairy
The most common application of L. casei is industrial, specifically for dairy production.[citation needed]
Lacticaseibacillus casei is typically the dominant species of nonstarter lactic acid bacteria (i.e. contaminant bacteria[9]) present in ripening cheddar cheese, and, recently, the complete genome sequence of L. casei ATCC 334 has become available.[dubious ] L. casei is also the dominant species in naturally fermented Sicilian green olives.[10]
Medical
A commercial beverage containing L. casei strain Shirota has been shown to inhibit the in vivo growth of Helicobacter pylori, but when the same beverage was consumed by humans in a small trial, H. pylori colonization decreased only slightly, and the trend was not statistically significant.[11] Some L. casei strains are considered to be probiotic, and may be effective in alleviation of gastrointestinal pathogenic bacterial diseases. According to World Health Organization, those properties have to be demonstrated on each specific strain—including human clinical studies—to be valid.[12] L. casei has been combined with other probiotic strains of bacteria in randomized trials studying its effects in preventing antibiotic-associated diarrhea (AAD) and Clostridium difficile infections (CDI), and patients in the trials who were not given the placebo had significantly lower rates of AAD or CDI (depending on the trial) with no adverse effects reported.[13] Additionally, trials have shown significantly shorter recovery times in children suffering from acute diarrhea (primarily caused by rotavirus) when given different L. casei treatments when compared to placebo.[14] Studies suggest that lactobacilli are a safe and effective treatment for acute and infectious diarrhea.[15]
In the preparation of food, L. casei bacteria can be used in the natural fermentation of beans to lower levels of the compounds causing flatulence upon digestion.[16]
Another strain that has been studied is "01", also known as "Lc-01" or Lacticaseibacillus casei-01.[17]
Commercial probiotic
Among the best-documented probiotic strains of L. casei, L. casei DN-114001 (Actimel/DanActive) and L. casei Shirota (Yakult) have been extensively studied[18] and are widely available as functional foods.
The genomes of these two strains have been sequenced from commercial yogurt, re-designated "LcA" and "LcY" respectively. They were found to be extremely closely related.[19]
Others
In the past few years, many studies have been conducted in the decolorization of azo dyes by lactic acid bacteria such as L. casei TISTR 1500, L. paracasei, Oenococcus oeni, etc. With the azoreductase activity, mono- and diazo bonds are degraded completely, and generate other aromatic compounds as intermediates.[20]
Characteristics of Lactocaseibacillus casei
The following table includes the colony, morphological, physiological, and biochemical characteristics of L. casei.[21][22][23]
Test type | Test | Characteristics |
---|---|---|
Colony characteristics | Type | Smooth |
Color | Opaque without pigment | |
Shape | Convex | |
Morphological characteristics | Arrangement | Short chains |
Size | 0.7-1.1 x 2.0-4.0 mm | |
Shape | Rod | |
Gram stain | + | |
Spores | - | |
Physiological characteristics | Motility | - |
Growth on 4% NaCl | + | |
Growth on 6.5% NaCl | - | |
Biochemical characteristics | Oxidase | - |
Catalase | - | |
Glucose | - | |
Lactose | + | |
Sucrose | + | |
Mannitol | + | |
Starch | + | |
Liquid hydrolysis | + | |
Indole | - | |
Methyl red | - | |
Voges-Proskauer | - | |
Citrate | + | |
Nitrate reduction | - | |
Urease | - | |
Hydrolysis of | Galactose | + |
Casein | + | |
Utilization of | Glycerol | + |
Galactose | + | |
D-Glucose | + | |
D-Fructose | + | |
D-Mannose | + | |
Mannitol | + |
Transformation
Lactic acid bacteria (LAB) is widely exploited for its probiotic and fermenting properties, so understanding how its genetic material is exchanged was crucial for researchers. A wide variety of comparative analyses were used to determine that horizontal gene transfer (HGT) influenced the evolution of the Lactobacillus genus.[24] HGT in L. casei includes transformation, conjugation, and transduction. The mobile genetic elements found within the genome, known as mobilomes, play an important role in Lactobacillaceae transfer. This includes insertion sequences, bacteriophages, integrons, plasmids, genomic islands, and transposons.[25] Within LAB, they are responsible for metabolizing different molecules, hydrolyzing proteins, resisting antibiotics, DNA, and phages, and modifying genetic elements.[26]
The first form of gene transfer used by Lactobacillus is transformation. This includes the uptake of naked DNA by a recipient bacterial cell to gain the genetic information of a donor cell.[27] This occurs after a donor bacterium has undergone autolysis and its DNA fragments are left within the free extracellular fluid.[28] The recipient bacterium will then ingest the DNA fragments and will result in either a bacterial cell with a plasmid or recombination of the recipient DNA will transpire within the chromosome.
The next form of transfer is conjugation, a process that involves the transfer of DNA from a Lactobacillus donor to a recipient via cell-to-cell contact or direct cytoplasmic contact.[29] In this process, the recipient cell is known as the transconjugant.[30] Once the cells come together, fragments of DNA are directly transferred from the donor to the transconjugant. This is mediated by pheromone-induced cell aggregation and mobilization proteins since many of the plasmids are unable to transfer on their own.[24] Afterward, the mating cells will separate and a recombinant cell will be produced after homologous recombination.[citation needed]
Finally, transduction in Lactobacillus cells is a bacteriophage-mediated transfer of plasmid or chromosomal genetic information.[31] To initiate this process, a bacteriophage must first infect the donor cell so that lysis of the cell will occur. At this point, the cell lysate will be filled with phages that carry donated genome fragments and the recipient cell will be injected with abnormal phage. This will result in a recombination cell whether the cell is infected after homologous recombination or after the infection occurs by bacteriophage integrase.[24]
See also
References
- ↑ Hill, Daragh; Sugrue, Ivan; Tobin, Conor; Hill, Colin; Stanton, Catherine; Ross, R. Paul (2018). "The Lactobacillus casei Group: History and Health Related Applications". Frontiers in Microbiology 9: 2107. doi:10.3389/fmicb.2018.02107. ISSN 1664-302X. PMID 30298055.
- ↑ 2.0 2.1 Zheng, Jinshui; Wittouck, Stijn; Salvetti, Elisa; Franz, Charles M.A.P.; Harris, Hugh M.B.; Mattarelli, Paola; O'Toole, Paul W.; Pot, Bruno et al. (2020). "A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae". International Journal of Systematic and Evolutionary Microbiology 70 (4): 2782–2858. doi:10.1099/ijsem.0.004107. ISSN 1466-5034. PMID 32293557.
- ↑ Wuyts, Sander; Wittouck, Stijn; Boeck, Ilke; Allonsius, Camille; Pasolli, Edoardo; Segata, Nicola; Lebeer, Sarah (2017-08-29). "Large-Scale Phylogenomics of the Lactobacillus casei Group Highlights Taxonomic Inconsistencies and Reveals Novel Clade-Associated Features". mSystems 2 (4): e00061–17. doi:10.1128/mSystems.00061-17. PMID 28845461. PMC 5566788. https://www.researchgate.net/publication/319246877.
- ↑ Wayne, L. G. (1 January 1994). "Actions of the Judicial Commission of the International Committee on Systematic Bacteriology on Requests for Opinions Published Between January 1985 and July 1993". International Journal of Systematic Bacteriology 44 (1): 177–178. doi:10.1099/00207713-44-1-177.
- ↑ Judicial Commission of the International Committee on Systematics of, Bacteria (July 2008). "The type strain of Lactobacillus casei is ATCC 393, ATCC 334 cannot serve as the type because it represents a different taxon, the name Lactobacillus paracasei and its subspecies names are not rejected and the revival of the name 'Lactobacillus zeae' contravenes Rules 51b (1) and (2) of the International Code of Nomenclature of Bacteria. Opinion 82.". International Journal of Systematic and Evolutionary Microbiology 58 (Pt 7): 1764–5. doi:10.1099/ijs.0.2008/005330-0. PMID 18599731.
- ↑ "Genus: Lacticaseibacillus" (in en). https://lpsn.dsmz.de/genus/lacticaseibacillus.
- ↑ Liu, DD; Gu, CT (December 2020). "Proposal to reclassify Lactobacillus zhaodongensis, Lactobacillus zeae, Lactobacillus argentoratensis and Lactobacillus buchneri subsp. silagei as Lacticaseibacillus zhaodongensis comb. nov., Lacticaseibacillus zeae comb. nov., Lactiplantibacillus argentoratensis comb. nov. and Lentilactobacillus buchneri subsp. silagei comb. nov., respectively and Apilactobacillus kosoi as a later heterotypic synonym of Apilactobacillus micheneri.". International Journal of Systematic and Evolutionary Microbiology 70 (12): 6414–6417. doi:10.1099/ijsem.0.004548. PMID 33112225.
- ↑ "Subspecies: Lactobacillus casei subsp. pseudoplantarum" (in en). https://lpsn.dsmz.de/subspecies/lactobacillus-casei-pseudoplantarum.
- ↑ "The role of the nonstarter lactic acid bacteria in Cheddar cheese ripening". International Journal of Dairy Technology 57 (2–3): 145–152. 2004. doi:10.1111/j.1471-0307.2004.00150.x.
- ↑ "Lactobacillus casei, dominant species in naturally fermented Sicilian green olives". International Journal of Food Microbiology 90 (1): 9–14. January 2004. doi:10.1016/S0168-1605(03)00159-4. PMID 14672826.
- ↑ "Effect of frequent consumption of a Lactobacillus casei-containing milk drink in Helicobacter pylori-colonized subjects". Alimentary Pharmacology & Therapeutics 17 (3): 429–35. February 2003. doi:10.1046/j.1365-2036.2003.01452.x. PMID 12562457.
- ↑ "Joint FAO/WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food". London, Ontario, Canada. April 30 – May 1, 2002. https://www.mhlw.go.jp/file/05-Shingikai-11121000-Iyakushokuhinkyoku-Soumuka/0000197343.pdf.
- ↑ McFarland, LV (2009). "Evidence-based review of probiotics for antibiotic-associated diarrhea and Clostridium difficile infections". Anaerobe 15 (6): 274–80. doi:10.1016/j.anaerobe.2009.09.002. PMID 19825425. http://www.chifountain.com/wp-content/uploads/2010/05/evidence-based-review-of-probiotics-for-antibiotic-associated-diarrhea-and-clostridium-difficile-infections.pdf. Retrieved 2012-04-15.
- ↑ Isolauri, Erika (1991). "A Human Lactobacillus Strain (Lactobacillus casei sp strain GG) Promotes Recovery From Acute Diarrhea in Children". Pediatrics 88 (1): 90–97. PMID 1905394. http://pediatrics.aappublications.org/content/88/1/90.short. Retrieved 2012-04-15.
- ↑ Van Niel, C. W.; Feudtner, C.; Garrison, M. M.; Christakis, D. A. (2002). "Lactobacillus Therapy for Acute Infectious Diarrhea in Children: A Meta-analysis". Pediatrics 109 (4): 678–684. doi:10.1542/peds.109.4.678. PMID 11927715. http://www.pediatricsdigest.mobi/content/109/4/678.short.
- ↑ Marisela Granito; Glenda Álvarez (June 2006). "Lactic acid fermentation of black beans (Phaseolus vulgaris): Microbiological and chemical characterization". Journal of the Science of Food and Agriculture 86 (8): 1164–1171. doi:10.1002/jsfa.2490. Bibcode: 2006JSFA...86.1164G.
- ↑ Pimentel, Tatiana Colombo; Brandão, Larissa Ramalho; de Oliveira, Matthaws Pereira; da Costa, Whyara Karoline Almeida; Magnani, Marciane (2021-08-01). "Health benefits and technological effects of Lacticaseibacillus casei-01: An overview of the scientific literature". Trends in Food Science & Technology 114: 722–737. doi:10.1016/j.tifs.2021.06.030. ISSN 0924-2244. https://www.sciencedirect.com/science/article/pii/S0924224421004027.
- ↑ Kazuyoshi Takeda; Ko Okumura (2007). "Effects of a Fermented Milk Drink Containing Lactobacillus casei Strain Shirota on the Human NK-Cell Activity". The Journal of Nutrition 137 (3): 791S–793S. doi:10.1093/jn/137.3.791S. PMID 17311976. http://jn.nutrition.org/content/137/3/791S.long#ref-8.
- ↑ Douillard, FP; Kant, R; Ritari, J; Paulin, L; Palva, A; de Vos, WM (September 2013). "Comparative genome analysis of Lactobacillus casei strains isolated from Actimel and Yakult products reveals marked similarities and points to a common origin.". Microbial Biotechnology 6 (5): 576–87. doi:10.1111/1751-7915.12062. PMID 23815335.
- ↑ "Metabolism of azo dyes by Lactobacillus casei TISTR 1500 and effects of various factors on decolorization". Water Res. 41 (5): 985–92. March 2007. doi:10.1016/j.watres.2006.12.001. PMID 17254626. Bibcode: 2007WatRe..41..985S. http://www.lib.kobe-u.ac.jp/repository/90000425.pdf.
- ↑ Rahmati, Farzad (2017-10-12). "Characterization of Lactobacillus, Bacillus and Saccharomyces isolated from Iranian traditional dairy products for potential sources of starter cultures". AIMS Microbiology 3 (4): 815–825. doi:10.3934/microbiol.2017.4.815. ISSN 2471-1888. PMID 31294191.
- ↑ Shukla, Geeta; Devi, Pushpa; Sehgal, Rakesh (October 2008). "Effect of Lactobacillus casei as a probiotic on modulation of giardiasis". Digestive Diseases and Sciences 53 (10): 2671–2679. doi:10.1007/s10620-007-0197-3. ISSN 0163-2116. PMID 18306038. https://pubmed.ncbi.nlm.nih.gov/18306038/.
- ↑ "Academic Journals". https://journals.tubitak.gov.tr/pageNotFound;jsessionid=DF47327321EB57DDFC15F45E15EE96E7.
- ↑ 24.0 24.1 24.2 Bacun-Druzina, Visnja; Mrvčić, Jasna; Ana, Butorac; Gjuracic, Kresimir (2009-09-01). "The influence of gene transfer on the lactic acid bacteria evolution". Mljekarstvo 59. https://www.researchgate.net/publication/26848508.
- ↑ Siefert, Janet (2009-02-01). "Defining the Mobilome". Horizontal Gene Transfer. Methods in Molecular Biology. 532. pp. 13–27. doi:10.1007/978-1-60327-853-9_2. ISBN 978-1-60327-852-2. https://www.researchgate.net/publication/24186565.
- ↑ Ghosh, Samrat; Sarangi, Aditya Narayan; Mukherjee, Mayuri; Bhowmick, Swati; Tripathy, Sucheta (2019-10-25). "Reanalysis of Lactobacillus paracasei Lbs2 Strain and Large-Scale Comparative Genomics Places Many Strains into Their Correct Taxonomic Position". Microorganisms 7 (11): 487. doi:10.3390/microorganisms7110487. ISSN 2076-2607. PMID 31731444.
- ↑ Hasegawa, Haruka; Suzuki, Erika; Maeda, Sumio (2018). "Horizontal Plasmid Transfer by Transformation in Escherichia coli: Environmental Factors and Possible Mechanisms". Frontiers in Microbiology 9: 2365. doi:10.3389/fmicb.2018.02365. ISSN 1664-302X. PMID 30337917.
- ↑ Wei, Ming-Qian; Rush, Catherine M.; Norman, Julianne M.; Hafner, Louise M.; Epping, Ronald J.; Timms, Peter (1995-01-01). "An improved method for the transformation of Lactobacillus strains using electroporation". Journal of Microbiological Methods 21 (1): 97–109. doi:10.1016/0167-7012(94)00038-9. ISSN 0167-7012. https://dx.doi.org/10.1016/0167-7012%2894%2900038-9.
- ↑ Willetts, N; Wilkins, B (March 1984). "Processing of plasmid DNA during bacterial conjugation.". Microbiological Reviews 48 (1): 24–41. doi:10.1128/mr.48.1.24-41.1984. ISSN 0146-0749. PMID 6201705.
- ↑ Carranza, Gerardo; Menguiano, Tamara; Valenzuela-Gómez, Fernando; García-Cazorla, Yolanda; Cabezón, Elena; Arechaga, Ignacio (2021). "Monitoring Bacterial Conjugation by Optical Microscopy". Frontiers in Microbiology 12: 750200. doi:10.3389/fmicb.2021.750200. ISSN 1664-302X. PMID 34671336.
- ↑ Chiang, Yin Ning; Penadés, José R.; Chen, John (2019-08-08). "Genetic transduction by phages and chromosomal islands: The new and noncanonical". PLOS Pathogens 15 (8): e1007878. doi:10.1371/journal.ppat.1007878. ISSN 1553-7366. PMID 31393945.
External links
Wikidata ☰ Q139777 entry
Original source: https://en.wikipedia.org/wiki/Lacticaseibacillus casei.
Read more |