Biology:List of hyperaccumulators
From HandWiki
Short description: none
This article covers known hyperaccumulators, accumulators or species tolerant to the following: Aluminium (Al), Silver (Ag), Arsenic (As), Beryllium (Be), Chromium (Cr), Copper (Cu), Manganese (Mn), Mercury (Hg), Molybdenum (Mo), Naphthalene, Lead (Pb), Selenium (Se) and Zinc (Zn).
See also:
- Hyperaccumulators table – 2
- Hyperaccumulators table – 3 : Cd, Cs, Co, Pu, Ra, Sr, U, radionuclides, hydrocarbons, organic solvents, etc.
Hyperaccumulators table – 1
Contaminant | Accumulation rates (in mg/kg dry weight) | Binomial name | English name | H-Hyperaccumulator or A-Accumulator P-Precipitator T-Tolerant | Notes | Sources |
---|---|---|---|---|---|---|
Al | A- | Agrostis castellana | highland bentgrass | As(A), Mn(A), Pb(A), Zn(A) | Origin: Portugal. | [1]:{{{1}}} |
Al | 1000 | Hordeum vulgare | Barley | 25 records of plants. | [1]:891[2] | |
Al | Hydrangea spp. | Hydrangea (a.k.a. Hortensia) | ||||
Al | Aluminium concentrations in young leaves, mature leaves, old leaves, and roots were found to be 8.0, 9.2, 14.4, and 10.1 mg g1, respectively.[3] | Melastoma malabathricum L. | Blue Tongue, or Native Lassiandra | P competes with Al and reduces uptake.[4] | ||
Al | Solidago hispida (Solidago canadensis L.) | Hairy Goldenrod | Origin Canada. | [1]:891[2] | ||
Al | 100 | Vicia faba | Horse Bean | [1]:891[2] | ||
Ag | 10-1200 | Salix miyabeana | Willow | Ag(T) | Seemed able to adapt to high AgNO 3 concentrations on a long timeline |
[5] |
Ag | Brassica napus | Rapeseed plant | Cr, Hg, Pb, Se, Zn | Phytoextraction | [1]:19[6] | |
Ag | Salix spp. | Osier spp. | Cr, Hg, Se, petroleum hydrocarbures, organic solvents, MTBE, TCE and by-products;[1]:19 Cd, Pb, U, Zn (S. viminalix);[7] Potassium ferrocyanide (S. babylonica L.)[8] | Phytoextraction. Perchlorate (wetland halophytes) | [1]:19 | |
Ag | Amanita strobiliformis | European Pine Cone Lepidella | Ag(H) | Macrofungi, Basidiomycete. Known from Europe, prefers calcareous areas | [9] | |
Ag | 10-1200 | Brassica juncea | Indian Mustard | Ag(H) | Can form alloys of silver-gold-copper | [10] |
As | 100 | Agrostis capillaris L. | Common Bent Grass, Browntop. (= A. tenuris) | Al(A), Mn(A), Pb(A), Zn(A) | [1]:891 | |
As | H- | Agrostis castellana | Highland Bent Grass | Al(A), Mn(A), Pb(A), Zn(A) | Origin Portugal. | [1]:898 |
As | 1000 | Agrostis tenerrima Trin. | Colonial bentgrass | 4 records of plants | [1]:891[11] | |
As | 2-1300 | Cyanoboletus pulverulentus | Ink Stain Bolete | contains dimethylarsinic acid | Europe | [12] |
As | 27,000 (fronds)[13] | Pteris vittata L. | Ladder brake fern or Chinese brake fern | 26% of As in the soil removed after 20 weeks' plantation, about 90% As accumulated in fronds.[14] | Root extracts reduce arsenate to arsenite.[15] | |
As | 100-7000 | Sarcosphaera coronaria | pink crown, violet crown-cup, or violet star cup | As(H) | Ectomycorrhizal ascomycete, known from Europe | [16][17] |
Be | No reports found for accumulation | [1]:891 | ||||
Cr | Azolla spp. | mosquito fern, duckweed fern, fairy moss, water fern | [1]:891[18] | |||
Cr | H- | Bacopa monnieri | Smooth Water Hyssop, Water hyssop, Brahmi, Thyme-leafed gratiola | Cd(H), Cu(H), Hg(A), Pb(A) | Origin India. Aquatic emergent species. | [1]:898[19] |
Cr | Brassica juncea L. | Indian mustard | Cd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A), Zn(H) | Cultivated in agriculture. | [1]:19,898[20] | |
Cr | Brassica napus | Rapeseed plant | Ag, Hg, Pb, Se, Zn | Phytoextraction | [6][1]:19 | |
Cr | A- | Vallisneria americana | Tape Grass | Cd(H), Pb(H) | Native to Europe and North Africa. Widely cultivated in the aquarium trade. | [1]:898 |
Cr | 1000 | Dicoma niccolifera | 35 records of plants | [1]:891 | ||
Cr | roots naturally absorb pollutants, some organic compounds believed to be carcinogenic,[21] in concentrations 10,000 times that in the surrounding water.[22] | Eichhornia crassipes | Water Hyacinth | Cd(H), Cu(A), Hg(H),[21] Pb(H),[21] Zn(A). Also Cs, Sr, U,[21][23] and pesticides.[24] | Pantropical/Subtropical. Plants sprayed with 2,4-D may accumulate lethal doses of nitrates.[25] 'The troublesome weed' – hence an excellent source of bioenergy.[21] | [1]:898 |
Cr | Helianthus annuus | Sunflower | Phytoextraction and rhizofiltration | [1]:19,898 | ||
Cr | A- | Hydrilla verticillata | Hydrilla | Cd(H), Hg(H), Pb(H) | [1]:898 | |
Cr | Pistia stratiotes | Water lettuce | Cd(T), Hg(H), Cr(H), Cu(T) | [1]:891,898[26] | ||
Cr | Salix spp. | Osier spp. | Ag, Hg, Se, petroleum hydrocarbures, organic solvents, MTBE, TCE and by-products;[1]:19 Cd, Pb, U, Zn (S. viminalix);[7] Potassium ferrocyanide (S. babylonica L.)[8] | Phytoextraction. Perchlorate (wetland halophytes) | [1]:19 | |
Cr | Salvinia molesta | Kariba weeds or water ferns | Cr(H), Ni(H), Pb(H), Zn(A) | [1]:891,898[27] | ||
Cr | Spirodela polyrhiza | Giant Duckweed | Cd(H), Ni(H), Pb(H), Zn(A) | Native to North America. | [1]:891,898[27] | |
Cr | A- | Thlaspi caerulescens | Alpine Pennycress, Alpine Pennygrass | Cd(H), Co(H), Cu(H), Mo, Ni(H), Pb(H), Zn(H) | Phytoextraction. T. caerulescens may acidify its rhizosphere, which would affect metal uptake by increasing available metals[28] | [1]:19,891,898[29][30][31] |
Cu | 9000 | Aeollanthus biformifolius | [32] | |||
Cu | Athyrium yokoscense | (Japanese false spleenwort?) | Cd(A), Pb(H), Zn(H) | Origin Japan. | [1]:898 | |
Cu | A- | Azolla filiculoides | Pacific mosquitofern | Ni(A), Pb(A), Mn(A) | Origin Africa. Floating plant. | [1]:898 |
Cu | H- | Bacopa monnieri | Smooth Water Hyssop, Water hyssop, Brahmi, Thyme-leafed gratiola | Cd(H), Cr(H), Hg(A), Pb(A) | Origin India. Aquatic emergent species. | [1]:898[19] |
Cu | Brassica juncea L. | Indian mustard | Cd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A), Zn(H) | cultivated | [1]:19,898[20] | |
Cu | H- | Vallisneria americana | Tape Grass | Cd(H), Cr(A), Pb(H) | Native to Europe and North Africa. Widely cultivated in the aquarium trade. | [1]:898 |
Cu | Eichhornia crassipes | Water Hyacinth | Cd(H), Cr(A), Hg(H), Pb(H), Zn(A), Also Cs, Sr, U,[23] and pesticides.[24] | Pantropical/Subtropical, 'the troublesome weed'. | [1]:898 | |
Cu | 1000 | Haumaniastrum robertii (Lamiaceae) |
Copper flower | 27 records of plants. Origin Africa. This species' phanerogam has the highest cobalt content. Its distribution could be governed by cobalt rather than copper.[33] | [1]:891[30] | |
Cu | Helianthus annuus | Sunflower | Phytoextraction with rhizofiltration | [1]:898[30] | ||
Cu | 1000 | Larrea tridentata | Creosote Bush | 67 records of plants. Origin U.S. | [1]:891[30] | |
Cu | H- | Lemna minor | Duckweed | Pb(H), Cd(H), Zn(A) | Native to North America and widespread worldwide. | [1]:898 |
Cu | Ocimum centraliafricanum | Copper plant | Cu(T), Ni(T) | Origin Southern Africa | [34] | |
Cu | T- | Pistia stratiotes | Water Lettuce | Cd(T), Hg(H), Cr(H) | Pantropical. Origin South U.S.A. Aquatic herb. | [1]:898 |
Cu | Thlaspi caerulescens | Alpine pennycress, Alpine Pennycress, Alpine Pennygrass | Cd(H), Cr(A), Co(H), Mo, Ni(H), Pb(H), Zn(H) | Phytoextraction. Cu noticeably limits its growth.[31] | [1]:19,891,898[28][29][30][31] | |
Mn | A- | Agrostis castellana | Highland Bent Grass | Al(A), As(A), Pb(A), Zn(A) | Origin Portugal. | [1]:898 |
Mn | Azolla filiculoides | Pacific mosquitofern | Cu(A), Ni(A), Pb(A) | Origin Africa. Floating plant. | [1]:898 | |
Mn | Brassica juncea L. | Indian mustard | [1]:19[20] | |||
Mn | 23,000 (maximum) 11,000 (average) leaf | Chengiopanax sciadophylloides (Franch. & Sav.) C.B.Shang & J.Y.Huang | koshiabura | Origin Japan. Forest tree. | [35] | |
Mn | Helianthus annuus | Sunflower | Phytoextraction and rhizofiltration | [1]:19 | ||
Mn | 1000 | Macadamia neurophylla (now Virotia neurophylla (Guillaumin) P. H. Weston & A. R. Mast) |
28 records of plants | [1]:891[36] | ||
Mn | 200 | [1]:891 | ||||
Hg | A- | Bacopa monnieri | Smooth Water Hyssop, Water hyssop, Brahmi, Thyme-leafed gratiola | Cd(H), Cr(H), Cu(H), Hg(A), Pb(A) | Origin India. Aquatic emergent species. | [1]:898[19] |
Hg | Brassica napus | Rapeseed plant | Ag, Cr, Pb, Se, Zn | Phytoextraction | [1]:19[6] | |
Hg | Eichhornia crassipes | Water Hyacinth | Cd(H), Cr(A), Cu(A), Pb(H), Zn(A). Also Cs, Sr, U,[23] and pesticides.[24] | Pantropical/Subtropical, 'the troublesome weed'. | [1]:898 | |
Hg | H- | Hydrilla verticillata | Hydrilla | Cd(H), Cr(A), Pb(H) | [1]:898 | |
Hg | 1000 | Pistia stratiotes | Water lettuce | Cd(T), Cr(H), Cu(T) | 35 records of plants | [1]:891,898[30][37][full citation needed] |
Hg | Salix spp. | Osier spp. | Ag, Cr, Se, petroleum hydrocarbures, organic solvents, MTBE, TCE and by-products;[1]:19 Cd, Pb, U, Zn (S. viminalix);[7] Potassium ferrocyanide (S. babylonica L.)[8] | Phytoextraction. Perchlorate (wetland halophytes) | [1]:19 | |
Mo | 1500 | Thlaspi caerulescens (Brassicaceae) | Alpine pennycress | Cd(H), Cr(A), Co(H), Cu(H), Ni(H), Pb(H), Zn(H) | phytoextraction | [1]:19,891,898[28][29][30][31] |
Naphthalene | Festuca arundinacea | Tall Fescue | Increases catabolic genes and the mineralization of naphthalene. | [38] | ||
Naphthalene | Trifolium hirtum | Pink clover, rose clover | Decreases catabolic genes and the mineralization of naphthalene. | [38] | ||
Pb | A- | Agrostis castellana | 'Highland Bent Grass | Al(A), As(H), Mn(A), Zn(A) | Origin Portugal. | [1]:898 |
Pb | Ambrosia artemisiifolia | Ragweed | [6] | |||
Pb | Armeria maritima | Seapink Thrift | [6] | |||
Pb | Athyrium yokoscense | (Japanese false spleenwort?) | Cd(A), Cu(H), Zn(H) | Origin Japan. | [1]:898 | |
Pb | A- | Azolla filiculoides | Pacific mosquitofern | Cu(A), Ni(A), Mn(A) | Origin Africa. Floating plant. | [1]:898 |
Pb | A- | Bacopa monnieri | Smooth Water Hyssop, Water hyssop, Brahmi, Thyme-leafed gratiola | Cd(H), Cr(H), Cu(H), Hg(A) | Origin India . Aquatic emergent species. | [1]:898[19] |
Pb | H- | Brassica juncea | Indian mustard | Cd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A), Zn(H) | 79 recorded plants. Phytoextraction | [1]:19,891,898[6][20][28][30][31][39] |
Pb | Brassica napus | Rapeseed plant | Ag, Cr, Hg, Se, Zn | Phytoextraction | [1]:19[6] | |
Pb | Brassica oleracea | Ornemental Kale and Cabbage, Broccoli | [6] | |||
Pb | H- | Vallisneria americana | Tape Grass | Cd(H), Cr(A), Cu(H) | Native to Europe and North Africa. Widely cultivated in the aquarium trade. | [1]:898 |
Pb | Eichhornia crassipes | Water Hyacinth | Cd(H), Cr(A), Cu(A), Hg(H), Zn(A). Also Cs, Sr, U,[23] and pesticides.[24] | Pantropical/Subtropical, 'the troublesome weed'. | [1]:898 | |
Pb | Festuca ovina | Blue Sheep Fescue | [6] | |||
Pb | Ipomoea trifida | Morning glory | Phytoextraction and rhizofiltration | [1]:19,898[6][7][39] | ||
Pb | H- | Hydrilla verticillata | Hydrilla | Cd(H), Cr(A), Hg(H) | [1]:898 | |
Pb | H- | Lemna minor | Duckweed | Cd(H), Cu(H), Zn(H) | Native to North America and widespread worldwide. | [1]:898 |
Pb | Salix viminalis | Common Osier | Cd, U, Zn,[7] Ag, Cr, Hg, Se, petroleum hydrocarbures, organic solvents, MTBE, TCE and by-products (S. spp.);[1]:19 Potassium ferrocyanide (S. babylonica L.)[8] | Phytoextraction. Perchlorate (wetland halophytes) | [7] | |
Pb | H- | Salvinia molesta | Kariba weeds or water ferns | Cr(H), Ni(H), Pb(H), Zn(A) | Origin India. | [1]:898 |
Pb | Spirodela polyrhiza | Giant Duckweed | Cd(H), Cr(H), Ni(H), Zn(A) | Native to North America. | [1]:891,898[27] | |
Pb | Thlaspi caerulescens (Brassicaceae) | Alpine pennycress, Alpine pennygrass | Cd(H), Cr(A), Co(H), Cu(H), Mo(H), Ni(H), Zn(H) | Phytoextraction. | [1]:19,891,898[28][29][30][31] | |
Pb | Thlaspi rotundifolium | Round-leaved Pennycress | [6] | |||
Pb | Triticum aestivum | Common Wheat | [6] | |||
Se | .012-20 | Amanita muscaria | Fly agaric | Cap contains higher concentrations than stalks[40] | ||
Se | Brassica juncea | Indian mustard | Rhizosphere bacteria enhance accumulation.[41] | [1]:19 | ||
Se | Brassica napus | Rapeseed plant | Ag, Cr, Hg, Pb, Zn | Phytoextraction. | [1]:19[6] | |
Se | Low rates of selenium volatilization from selenate-supplied Muskgrass (10-fold less than from selenite) may be due to a major rate limitation in the reduction of selenate to organic forms of selenium in Muskgrass. | Chara canescens Desv. & Lois | Muskgrass | Muskgrass treated with selenite contains 91% of the total Se in organic forms (selenoethers and diselenides), compared with 47% in Muskgrass treated with selenate.[42] 1.9% of the total Se input is accumulated in its tissues; 0.5% is removed via biological volatilization.[43] | [44] | |
Se | Bassia scoparia (a.k.a. Kochia scoparia) |
burningbush, ragweed, summer cypress, fireball, belvedere and Mexican firebrush, Mexican fireweed | U,[7] Cr, Pb, Hg, Ag, Zn | Perchlorate (wetland halophytes). Phytoextraction. | [1]:19,898 | |
Se | Salix spp. | Osier spp. | Ag, Cr, Hg, petroleum hydrocarbures, organic solvents, MTBE, TCE and by-products;[1]:19 Cd, Pb, U, Zn (S. viminalis);[7] Potassium ferrocyanide (S. babylonica L.)[8] | Phytoextraction. Perchlorate (wetland halophytes). | [1]:19 | |
Zn | A- | Agrostis castellana | Highland Bent Grass | Al(A), As(H), Mn(A), Pb(A) | Origin Portugal. | [1]:898 |
Zn | Athyrium yokoscense | (Japanese false spleenwort?) | Cd(A), Cu(H), Pb(H) | Origin Japan. | [1]:898 | |
Zn | Brassicaceae | Mustards, mustard flowers, crucifers or cabbage family | Cd(H), Cs(H), Ni(H), Sr(H) | Phytoextraction | [1]:19 | |
Zn | Brassica juncea L. | Indian mustard | Cd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A). | Larvae of Pieris brassicae do not even sample its high-Zn leaves. (Pollard and Baker, 1997) | [1]:19,898[20] | |
Zn | Brassica napus | Rapeseed plant | Ag, Cr, Hg, Pb, Se | Phytoextraction | [1]:19[6] | |
Zn | Helianthus annuus | Sunflower | Phytoextraction and rhizofiltration | [1]:19[7] | ||
Zn | Eichhornia crassipes | Water Hyacinth | Cd(H), Cr(A), Cu(A), Hg(H), Pb(H). Also Cs, Sr, U,[23] and pesticides.[24] | Pantropical/Subtropical, 'the troublesome weed'. | [1]:898 | |
Zn | Salix viminalis | Common Osier | Ag, Cr, Hg, Se, petroleum hydrocarbons, organic solvents, MTBE, TCE and by-products;[1]:19 Cd, Pb, U (S. viminalis);[7] Potassium ferrocyanide (S. babylonica L.)[8] | Phytoextraction. Perchlorate (wetland halophytes). | [7] | |
Zn | A- | Salvinia molesta | Kariba weeds or water ferns | Cr(H), Ni(H), Pb(H), Zn(A) | Origin India. | [1]:898 |
Zn | 1400 | Silene vulgaris (Moench) Garcke (Caryophyllaceae) | Bladder campion | Ernst et al. (1990) | ||
Zn | Spirodela polyrhiza | Giant Duckweed | Cd(H), Cr(H), Ni(H), Pb(H) | Native to North America. | [1]:891,898[27] | |
Zn | H-10,000 | Thlaspi caerulescens (Brassicaceae) | Alpine pennycress | Cd(H), Cr(A), Co(H), Cu(H), Mo, Ni(H), Pb(H) | 48 records of plants. May acidify its own rhizosphere, which would facilitate absorption by solubilization of the metal[28] | [1]:19,891,898[29][30][31][39] |
Zn | Trifolium pratense | Red Clover | Nonmetal accumulator. | Its rhizosphere is denser in bacteria than that of Thlaspi caerulescens, but T. caerulescens has relatively more metal-resistant bacteria.[28] |
Cs-137 activity was much smaller in leaves of larch and sycamore maple than of spruce: spruce > larch > sycamore maple.
References
- ↑ 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.22 1.23 1.24 1.25 1.26 1.27 1.28 1.29 1.30 1.31 1.32 1.33 1.34 1.35 1.36 1.37 1.38 1.39 1.40 1.41 1.42 1.43 1.44 1.45 1.46 1.47 1.48 1.49 1.50 1.51 1.52 1.53 1.54 1.55 1.56 1.57 1.58 1.59 1.60 1.61 1.62 1.63 1.64 1.65 1.66 1.67 1.68 1.69 1.70 1.71 1.72 1.73 1.74 1.75 1.76 1.77 1.78 1.79 1.80 1.81 1.82 McCutcheon, Steven C.; Schnoor, Jerald L. (2003). Phytoremediation: Transformation and Control of Contaminants. Environmental Science and Technology. Wiley. ISBN 978-0-471-39435-8.
- ↑ 2.0 2.1 2.2 Grauer, U. E.; Horst, W. J. (September 1990). "Effect of pH and nitrogen source on aluminium tolerance of rye (Secale cereale L.) and yellow lupin (Lupinus luteus L.)". Plant and Soil (Springer) 127 (1): 13–21. doi:10.1007/BF00010832.
- ↑ Toshihiro Watanabe; Mitsuru Osaki; Teruhiko Yoshihara; Toshiaki Tadano (April 1998). "Distribution and chemical speciation of aluminum in the Al accumulator plant, Melastoma malabathricum L.". Plant and Soil 201 (2): 165–173. doi:10.1023/A:1004341415878.
- ↑ Shoellhorn, Rick; Richardson, Alexis A. (2005). "Warm Climate Production Guidelines for Japanese Hydrangeas". EDIS (Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida) 2005 (4). doi:10.32473/edis-ep177-2005. ENH910/EP177.
- ↑ Nissim, Werther G.; Frederic E., Pitre; Kadri, Hafssa; Desjardins, Dominic; Labrecque, Michel (2014). "Early Response Of Willow To Increasing Silver Concentration Exposure". International Journal of Phytoremediation 16 (4): 660–670. doi:10.1080/15226514.2013.856840. PMID 24933876.
- ↑ 6.00 6.01 6.02 6.03 6.04 6.05 6.06 6.07 6.08 6.09 6.10 6.11 6.12 6.13 Fiegl, Joseph L.; McDonnell, Bryan P.; Kostel, Jill A.; Finster, Mary E.; Gray, Kimberly A.. "A Resource Guide: The Phytoremediation of Lead to Urban, Residential Soils". Evanston, IL: McCormick School of Engineering, Northwestern University. http://www.civil.northwestern.edu/ehe/html_kag/kimweb/MEOP/INDEX.HTM.
- ↑ 7.00 7.01 7.02 7.03 7.04 7.05 7.06 7.07 7.08 7.09 7.10 Schmidt, Ulrich (2003). "Enhancing Phytoextraction: The Effect of Chemical Soil Manipulation on Mobility, Plant Accumulation, and Leaching of Heavy Metals". Journal of Environmental Quality 32 (6): 1939–54. doi:10.2134/jeq2003.1939. PMID 14674516.
- ↑ 8.0 8.1 8.2 8.3 8.4 8.5 Yu, Xiao-Zhang; Zhou, Pu-Hua; Yang, Yong-Miao (July 2006). "The potential for phytoremediation of iron cyanide complex by willows". Ecotoxicology 15 (5): 461–7. doi:10.1007/s10646-006-0081-5. PMID 16703454.
- ↑ Borovička, Jan; Řanda, Zdeněk; Jelínek, Emil; Kotrba, Pavel; Dunn, Colin E. (November 2007). "Hyperaccumulation of silver by Amanita strobiliformis and related species of the section Lepidella". Mycological Research 111 (11): 1339–1344. doi:10.1016/j.mycres.2007.08.015. PMID 18023163.
- ↑ Haverkamp, Richard G.; Marshall, Aaron T.; van Agterveld, Dimitri (2007). "Pick your carats: nanoparticles of gold–silver–copper alloy produced in vivo". Journal of Nanoparticle Research 9 (4): 697–700. doi:10.1007/s11051-006-9198-y. Bibcode: 2007JNR.....9..697H.
- ↑ Porter, E. K.; Peterson, P. J. (November 1975). "Arsenic accumulation by plants on mine waste (United Kingdom)". Science of the Total Environment (Elsevier) 4 (4): 365–371. doi:10.1016/0048-9697(75)90028-5. Bibcode: 1975ScTEn...4..365P.
- ↑ Braeuer, Simone; Goessler, Walter; Kameník, Jan; Konvalinková, Tereza; Žigová, Anna; Borovička, Jan (2018). "Arsenic hyperaccumulation and speciation in the edible ink stain bolete (Cyanoboletus pulverulentus)". Food Chemistry 242: 225–231. doi:10.1016/j.foodchem.2017.09.038. PMID 29037683.
- ↑ Junru Wang; Fang-Jie Zhao; Andrew A. Meharg; Andrea Raab; Joerg Feldmann; Steve P. McGrath (November 2002). "Mechanisms of Arsenic Hyperaccumulation in Pteris vittata. Uptake Kinetics, Interactions with Phosphate, and Arsenic Speciation". Plant Physiol 130 (3): 1552–61. doi:10.1104/pp.008185. PMID 12428020.
- ↑ Tu, Cong; Ma, Lena Q.; Bondada, Bhaskhar (2002). "Arsenic Accumulation in the Hyperaccumulator Chinese Brake and Its Utilization Potential for Phytoremediation". Journal of Environmental Quality 31 (5): 1671–5. doi:10.2134/jeq2002.1671. PMID 12371185.
- ↑ Duan, Gui-Lan; Zhu, Yong-Guan; Tong, Yi-Ping; Cai, Chao; Kneer, Ralf (2005). "Characterization of Arsenate Reductase in the Extract of Roots and Fronds of Chinese Brake Fern, an Arsenic Hyperaccumulator". Plant Physiology 138 (1): 461–9. doi:10.1104/pp.104.057422. PMID 15834011.
- ↑ Stijve, Tjakko; Vellinga, Else C.; Herrmann, André (1990). "Arsenic accumulation in some higher fungi". Persoonia - Molecular Phylogeny and Evolution of Fungi 14 (2): 161–166. https://repository.naturalis.nl/pub/531714.
- ↑ Borovička, Jan (2004). "Nová lokalita baňky velkokališné" (in cs). Mykologický sborník (Prague: Czech Mycological Society) 81 (3): 97–99.
- ↑ Priel, A.. "Purification of industrial wastewater with the Azolla fern". World Water and Environmental Engineering 18.
- ↑ 19.0 19.1 19.2 19.3 Gupta, Manisha; Sinha, Sarita; Chandra, Prakash (1994). "Uptake and toxicity of metals in Scirpus lacustris L. and Bacopa monnieri l.". Journal of Environmental Science and Health. Part A: Environmental Science and Engineering and Toxicology (Taylor & Francis) 29 (10): 2185–2202. doi:10.1080/10934529409376173.
- ↑ 20.0 20.1 20.2 20.3 20.4 Bennett, Lindsay E.; Burkhead, Jason L.; Hale, Kerry L.; Terry, Norman; Pilon, Marinus; Pilon-Smits, Elizabeth A. H. (March 2003). "Analysis of Transgenic Indian Mustard Plants for Phytoremediation of Metal-Contaminated Mine Tailings". Journal of Environmental Quality 32 (2): 432–440. doi:10.2134/jeq2003.4320. PMID 12708665.
- ↑ 21.0 21.1 21.2 21.3 21.4 Duke, James A. (1983). "Handbook of Energy Crops". West Lafayette, IN: Center for New Crops and Plant Products, Purdue University. https://hort.purdue.edu/newcrop/duke_energy/dukeindex.html.
- ↑ "Biology Briefs". BioScience 26 (3): 223–224. 1976. doi:10.2307/1297259.
- ↑ 23.0 23.1 23.2 23.3 23.4 "Phytoremediation of Radionuclides". Colorado State University. http://rydberg.biology.colostate.edu/Phytoremediation/2000/Lawra/BZ580.htm.
- ↑ 24.0 24.1 24.2 24.3 24.4 Lan, Jun-Kang (March 2004). "Recent developments of phytoremediation". Journal of Geological. Hazards and Environmental Preservation 15 (1): 46–51. http://md1.csa.com/partners/viewrecord.php?requester=gs&collection=ENV&recid=6028544&q=&uid=788532439&setcookie=yes.
- ↑ Göhl, Bo; International Foundation for Science (1981). Tropical feeds. Feeds information summaries and nutritive values. FAO Animal Production and Health. 12. Stockholm: Food and Agriculture Organization of the United Nations.
- ↑ Sen, A. K.; Mondal, N. G.; Mandal, S. (1 January 1987). "Studies of Uptake and Toxic Effects of Cr(VI) on Pistia stratiotes". Water Science and Technology (International Water Association) 19 (1–2): 119–127. doi:10.2166/wst.1987.0194.
- ↑ 27.0 27.1 27.2 27.3 Srivastav, R. K.; Gupta, S. K.; Nigam, K. D. P.; Vasudevan, P. (July 1994). "Treatment of chromium and nickel in wastewater by using aquatic plants". Water Research 28 (7): 1631–1638. doi:10.1016/0043-1354(94)90231-3.
- ↑ 28.0 28.1 28.2 28.3 28.4 28.5 28.6 Delorme, Thierry A.; Gagliardi, Joel V.; Angle, J. Scott; Chaney, Rufus L. (2001). "Influence of the zinc hyperaccumulator Thlaspi caerulescens J. & C. Presl. and the nonmetal accumulator Trifolium pratense L. on soil microbial populations". Canadian Journal of Microbiology (Canadian Science Publishing) 47 (8): 773–776. doi:10.1139/w01-067. PMID 11575505.
- ↑ 29.0 29.1 29.2 29.3 29.4 Majeti Narasimha Vara Prasad (2005). "Nickelophilous plants and their significance in phytotechnologies". Brazilian Journal of Plant Physiology 17 (1): 113–128. doi:10.1590/s1677-04202005000100010.
- ↑ 30.0 30.1 30.2 30.3 30.4 30.5 30.6 30.7 30.8 30.9 Baker, Alan J. M.; Brooks, Robert R. (1989). "Terrestrial higher plants which hyperaccumulate metallic elements: A review of their distribution, ecology and phytochemistry". Biorecovery 1: 81–126. ISSN 0269-7572. https://www.researchgate.net/publication/247713966.
- ↑ 31.0 31.1 31.2 31.3 31.4 31.5 31.6 Lombi, Enzo; Zhao, Fang-Jie; Dunham, Sarah J.; McGrath, Steve P. (2001). "Phytoremediation of Heavy Metal, Contaminated Soils, Natural Hyperaccumulation versus Chemically Enhanced Phytoextraction". Journal of Environmental Quality 30 (6): 1919–1926. doi:10.2134/jeq2001.1919. PMID 11789997.
- ↑ Morrison, Richard S.; Brooks, Robert R.; Reeves, Roger D.; Malaisse, François (1979). "Copper and cobalt uptake by metallophytes from Zaïre". Plant and Soil (Kluwer) 53 (4): 535–539. doi:10.1007/bf02140724. https://orbi.uliege.be/bitstream/2268/266081/1/Copper-and-cobalt-uptake-by-metallophytes-from-ZarePlant-and-Soil.pdf.
- ↑ Brooks, Robert R. (1977). "Copper and cobalt uptake by Haumaniustrum species". Plant and Soil 48 (2): 541–544. doi:10.1007/BF02187261.
- ↑ Howard-Williams, Clive (1970). "The ecology of Becium homblei in Central Africa with special reference to metalliferous soils". Journal of Ecology 58 (3): 745–763. doi:10.2307/2258533.
- ↑ Mizuno, Takafumi; Emori, Kanae; Ito, Shin-ichiro (2013). "Manganese hyperaccumulation from non-contaminated soil in Chengiopanax sciadophylloides Franch. and Sav. and its correlation with calcium accumulation". Soil Science and Plant Nutrition 59 (4): 591–602. doi:10.1080/00380768.2013.807213.
- ↑ Baker, Alan J. M.; Walker, Philip L. (1990). "Ecophysiology of Metal Uptake by Tolerant Plants". in Shaw, A. Jonathan. Heavy metal tolerance in plants: evolutionary aspects. Boca Raton, FL.: CRC Press. pp. 155–177. ISBN 0-8493-6852-9.
- ↑ Atri 1983
- ↑ 38.0 38.1 Siciliano, Steven D.; Germida, James J.; Banks, Kathy; Greer, Charles W. (January 2003). "Changes in Microbial Community Composition and Function during a Polyaromatic Hydrocarbon Phytoremediation Field Trial". Applied and Environmental Microbiology 69 (1): 483–9. doi:10.1128/AEM.69.1.483-489.2003. PMID 12514031. Bibcode: 2003ApEnM..69..483S.
- ↑ 39.0 39.1 39.2 Template:Cite tech report
- ↑ Stijve, Tjakko (September 1977). "Selenium content of mushrooms". Zeitschrift für Lebensmittel-Untersuchung und -Forschung A 164 (3): 201–3. doi:10.1007/BF01263031. PMID 562040.
- ↑ de Souza, Mark P.; Chu, Dara; Zhao, May; Zayed, Adel M.; Ruzin, Steven E.; Schichnes, Denise; Terry, Norman (1999). "Rhizosphere Bacteria Enhance Selenium Accumulation and Volatilization by Indian mustard". Plant Physiology 119 (2): 565–574. doi:10.1104/pp.119.2.565. PMID 9952452.
- ↑ X-ray absorption spectroscopy speciation analysis.
- ↑ Average Se concentration of 22 µg L-1 supplied over a 24-d experimental period.
- ↑ Z.-Q. Lin; M.P. de Souza; I. J. Pickering; N. Terry (2002). "Evaluation of the Macroalga, Muskgrass, for the Phytoremediation of Selenium-Contaminated Agricultural Drainage Water by Microcosms". Journal of Environmental Quality 31 (6): 2104–10. doi:10.2134/jeq2002.2104. PMID 12469862.
Original source: https://en.wikipedia.org/wiki/List of hyperaccumulators.
Read more |