Biology:NT5C3
Generic protein structure example |
Cytosolic 5'-nucleotidase 3 (NTC53), also known as cytosolic 5'-nucleotidase 3A, pyrimidine 5’-nucleotidase (PN-I or P5'NI), and p56, is an enzyme that in humans is encoded by the NT5C3, or NT5C3A, gene on chromosome 7.[1][2][3][4]
This gene encodes a member of the 5'-nucleotidase family of enzymes that catalyze the dephosphorylation of nucleoside 5'-monophosphates. The encoded protein is the type 1 isozyme of pyrimidine 5' nucleotidase and catalyzes the dephosphorylation of pyrimidine 5' monophosphates. Mutations in this gene are a cause of hemolytic anemia due to uridine 5-prime monophosphate hydrolase deficiency. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene, and pseudogenes of this gene are located on the long arm of chromosomes 3 and 4. [provided by RefSeq, Mar 2012][3]
Structure
The NT5C3 gene consists of 10 exons and can be alternatively spliced at exon 2.[5] Four possible isoforms have been identified, encoding proteins with lengths of 336 residues, 297 residues, 286 residues, and 285 residues.[5][6] The 286-residue long isozyme is a monomeric protein containing 5 cysteine residues and no disulfide bridges or phosphate content.[4][5] It has a predicted mass of 32.7 kDa and a predicted globular tertiary structure consisting of approximately 30% α-helices and 26% extended strands.[5] This enzyme structurally resembles members of the haloacid dehalogenase (HAD) superfamily in regards to the shared α/β-Rossmann-like domain and a smaller 4-helix bundle domain. Three motifs in the α/β-Rossmann-like domain form the catalytic phosphate-binding site. Motif I is responsible for the 5′-nucleotidase activity: the first Asp makes a nucleophilic attack on the phosphate of the nucleoside monophosphate substrate, while the second Asp donates a proton to the leaving nucleoside. The active site is located in a cleft between the α/β-Rossmann-like domain and 4-helix bundle domain.[7]
Function
NT5C3 is a member of the 5'-nucleotidase family and one of the five cytosolic members identified in humans.[6] NTC53 catalyzes the dephosphorylation of the pyrimidine 5′ monophosphates UMP and CMP to the corresponding nucleosides.[4][5] This function contributes to RNA degradation during the erythrocyte maturation process.[2][4][6] As a result, NT5C3 regulates both the endogenous nucleoside and nucleotide pool balance, as well as that of pyrimidine analogs such as gemcitabine and AraC.[6]
NT5C3 was first discovered in red blood cells, but its expression has been observed in multiple tumors (lung, ovary, colon, bladder), fetal tissues (lung, heart, spleen, liver), adult testis, and the brain.[2][5] In particular, the 297-residue isoform of this enzyme is highly expressed in lymphoblastoid cells.[6]
Clinical Significance
The loss of NT5C3 in pyrimidine 5' nucleotidase deficiency, an autosomal recessive condition, leads to the accumulation of high concentrations of pyrimidine nucleotides within erythrocytes.[2][4][5] This deficiency is characterized by moderate hemolytic anemia, jaundice, splenomegaly, and marked basophilic stippling, and has been associated with learning difficulties.[2][5] Two homozygous mutations identified in this gene produced large deletions that could cripple the enzyme’s structure and function, and are thus causally linked to pyrimidine 5' nucleotidase deficiency and hemolytic anemia. Heterozygous mutations in pyrimidine 5' nucleotidase deficiency may contribute to the large variability in thalassemia phenotypes.[5] Pyrimidine 5' nucleotidase deficiency is also linked to the conversion of hemoglobin E disease into an unstable hemoglobinopathy-like disease.[2][5] NT5C3 is identical to p36, a previously identified alpha-interferon-induced protein involved in forming lupus inclusions.[2][4] Since NT5C3 can metabolize AraC, a nucleoside analog used in chemotherapy for acute myeloid leukemia patients, genotyping one of its polymorphisms may aid detection of patients who will respond favorably to this therapy.[8]
Interactions
NTC53 is known to interact with pyrimidine nucleoside monophosphates, specifically UMP and CMP, as well as the anineoplastic agents 5’-AZTMP and 5’-Ara-CMP.[4]
References
- ↑ "Cloning and Functional Analysis of cDNAs with Open Reading Frames for 300 Previously Undefined Genes Expressed in CD34+ Hematopoietic Stem/Progenitor Cells". Genome Res 10 (10): 1546–60. Nov 2000. doi:10.1101/gr.140200. PMID 11042152.
- ↑ 2.0 2.1 2.2 2.3 2.4 2.5 2.6 "Human erythrocyte pyrimidine 5-nucleotidase, PN-I, is identical to p36, a protein associated to lupus inclusion formation in response to alpha-interferon". Blood 96 (4): 1596–8. Sep 2000. doi:10.1182/blood.V96.4.1596. PMID 10942414.
- ↑ 3.0 3.1 "Entrez Gene: NT5C3 5'-nucleotidase, cytosolic III". https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=51251.
- ↑ 4.0 4.1 4.2 4.3 4.4 4.5 4.6 Amici, A; Magni, G (15 January 2002). "Human erythrocyte pyrimidine 5'-nucleotidase, PN-I.". Archives of Biochemistry and Biophysics 397 (2): 184–90. doi:10.1006/abbi.2001.2676. PMID 11795870.
- ↑ 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 Marinaki, AM; Escuredo, E; Duley, JA; Simmonds, HA; Amici, A; Naponelli, V; Magni, G; Seip, M et al. (1 June 2001). "Genetic basis of hemolytic anemia caused by pyrimidine 5' nucleotidase deficiency.". Blood 97 (11): 3327–32. doi:10.1182/blood.v97.11.3327. PMID 11369620.
- ↑ 6.0 6.1 6.2 6.3 6.4 Aksoy, P; Zhu, MJ; Kalari, KR; Moon, I; Pelleymounter, LL; Eckloff, BW; Wieben, ED; Yee, VC et al. (August 2009). "Cytosolic 5'-nucleotidase III (NT5C3): gene sequence variation and functional genomics.". Pharmacogenetics and Genomics 19 (8): 567–76. doi:10.1097/fpc.0b013e32832c14b8. PMID 19623099.
- ↑ Walldén, K; Stenmark, P; Nyman, T; Flodin, S; Gräslund, S; Loppnau, P; Bianchi, V; Nordlund, P (15 June 2007). "Crystal structure of human cytosolic 5'-nucleotidase II: insights into allosteric regulation and substrate recognition.". The Journal of Biological Chemistry 282 (24): 17828–36. doi:10.1074/jbc.m700917200. PMID 17405878.
- ↑ Cheong, HS; Koh, Y; Ahn, KS; Lee, C; Shin, HD; Yoon, SS (September 2014). "NT5C3 polymorphisms and outcome of first induction chemotherapy in acute myeloid leukemia.". Pharmacogenetics and Genomics 24 (9): 436–41. doi:10.1097/fpc.0000000000000072. PMID 25000516.
Further reading
- "Homogeneous pyrimidine nucleotidase from human erythrocytes: enzymic and molecular properties". Biochem. J. 304 (Pt 3): 987–92. 1995. doi:10.1042/bj3040987. PMID 7818506.
- "Purification, microsequencing, and immunolocalization of p36, a new interferon-alpha-induced protein that is associated with human lupus inclusions". J. Biol. Chem. 271 (2): 1118–26. 1996. doi:10.1074/jbc.271.2.1118. PMID 8557639.
- "Generation and analysis of 280,000 human expressed sequence tags". Genome Res. 6 (9): 807–28. 1997. doi:10.1101/gr.6.9.807. PMID 8889549.
- "Pyrimidine nucleotidases from human erythrocyte possess phosphotransferase activities specific for pyrimidine nucleotides". FEBS Lett. 419 (2–3): 263–7. 1998. doi:10.1016/S0014-5793(97)01464-6. PMID 9428647.
- "DNA Cloning Using In Vitro Site-Specific Recombination". Genome Res. 10 (11): 1788–95. 2001. doi:10.1101/gr.143000. PMID 11076863.
- "Toward a Catalog of Human Genes and Proteins: Sequencing and Analysis of 500 Novel Complete Protein Coding Human cDNAs". Genome Res. 11 (3): 422–35. 2001. doi:10.1101/gr.GR1547R. PMID 11230166.
- "Genetic basis of hemolytic anemia caused by pyrimidine 5' nucleotidase deficiency". Blood 97 (11): 3327–32. 2001. doi:10.1182/blood.V97.11.3327. PMID 11369620.
- "Human erythrocyte pyrimidine 5'-nucleotidase, PN-I". Arch. Biochem. Biophys. 397 (2): 184–90. 2002. doi:10.1006/abbi.2001.2676. PMID 11795870.
- "Kinetic evidence for covalent phosphoryl-enzyme intermediate in phosphotransferase activity of human red cell pyrimidine nucleotidases". Meth. Enzymol.. Methods in Enzymology 354: 149–59. 2003. doi:10.1016/S0076-6879(02)54011-8. ISBN 978-0-12-182257-6. PMID 12418222.
- "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. 2003. doi:10.1073/pnas.242603899. PMID 12477932. Bibcode: 2002PNAS...9916899M.
- "Molecular characterization of Turkish patients with pyrimidine 5' nucleotidase-I deficiency". Blood 102 (5): 1900–3. 2003. doi:10.1182/blood-2003-02-0628. PMID 12714505.
- "Molecular characterization of six unrelated Italian patients affected by pyrimidine 5'-nucleotidase deficiency". Br. J. Haematol. 122 (5): 847–51. 2003. doi:10.1046/j.1365-2141.2003.04532.x. PMID 12930399.
- "Molecular basis of Japanese variants of pyrimidine 5'-nucleotidase deficiency". Br. J. Haematol. 126 (2): 265–71. 2004. doi:10.1111/j.1365-2141.2004.05029.x. PMID 15238149.
- "The Status, Quality, and Expansion of the NIH Full-Length cDNA Project: The Mammalian Gene Collection (MGC)". Genome Res. 14 (10B): 2121–7. 2004. doi:10.1101/gr.2596504. PMID 15489334.
- "From ORFeome to Biology: A Functional Genomics Pipeline". Genome Res. 14 (10B): 2136–44. 2004. doi:10.1101/gr.2576704. PMID 15489336.
- "Functional analysis of pyrimidine 5'-nucleotidase mutants causing nonspherocytic hemolytic anemia". Blood 105 (8): 3340–5. 2005. doi:10.1182/blood-2004-10-3895. PMID 15604219.
- "The LIFEdb database in 2006". Nucleic Acids Res. 34 (Database issue): D415–8. 2006. doi:10.1093/nar/gkj139. PMID 16381901.