Biology:Neoaves

From HandWiki
Short description: Clade of birds

Neoavians
Temporal range: PaleoceneHolocene, 62.5–0 Ma[1]
Possible Late Cretaceous origin based on molecular clock[2][3]
Podiceps cristatus 2 - Lake Dulverton.jpg
Great crested grebe (Podiceps cristatus)
House sparrow David Raju (2).jpg
House sparrow (Passer domesticus)
Scientific classification e
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Aves
Infraclass: Neognathae
Clade: Neoaves
Sibley et al., 1988
Clades

Neoaves is a clade that consists of all modern birds (Neornithes or Aves) with the exception of Palaeognathae (ratites and kin) and Galloanserae (ducks, chickens and kin).[4] Almost 95% of the roughly 10,000 known species of extant birds belong to the Neoaves.[5]

The early diversification of the various neoavian groups occurred very rapidly around the Cretaceous–Paleogene extinction event,[6][7] and attempts to resolve their relationships with each other have resulted initially in much controversy.[8][9]

Phylogeny

The early diversification of the various neoavian groups occurred very rapidly around the Cretaceous–Paleogene extinction event.[10] As a result of the rapid radiation, attempts to resolve their relationships have produced conflicting results, some quite controversial, especially in the earlier studies.[11][12][13] Nevertheless, some recent large phylogenomic studies of Neoaves have led to much progress on defining orders and supraordinal groups within Neoaves. Still, the studies have failed to produce to a consensus on an overall high order topology of these groups.[14][15][16][13] A genomic study of 48 taxa by Jarvis et al. (2014) divided Neoaves into two main clades, Columbea and Passerea, but an analysis of 198 taxa by Prum et al. (2015) recovered different groupings for the earliest split in Neoaves.[14][15] A reanalysis with an extended dataset by Reddy et al. (2017) suggested this was due to the type of sequence data, with coding sequences favouring the Prum topology.[16] The disagreement on topology even with large phylogenomic studies led Suh (2016) to propose a hard polytomy of nine clades as the base of Neoaves.[17] An analysis by Houde et al. (2019) recovered Columbea and a reduced hard polytomy of six clades within Passerea.[18]

Despite other disagreements, these studies do agree on a number of supraorderal groups, which Reddy et al. (2017) dubbed the "magnificent seven", which together with three "orphaned orders" make up Neoaves.[16] Significantly, they both include a large waterbird clade (Aequornithes) and a large landbird clade (Telluraves). The groups defined by Reddy et al. (2017) are as follows:

  • The "magnificent seven" supraordinal clades:
  1. Telluraves (landbirds)
  2. Aequornithes (waterbirds)
  3. Eurypygimorphae (sunbittern, kagu and tropicbirds)
  4. Otidimorphae (turacos, bustards and cuckoos)
  5. Strisores (nightjars, swifts, hummingbirds and allies)
  6. Columbimorphae (mesites, sandgrouse and pigeons)
  7. Mirandornithes (flamingos and grebes)

<section begin=compare /> Script error: No such module "Clade/gallery". <section end=compare />

The following cladogram illustrates the proposed relationships between all neoavian bird clades. This consensus phylogeny of birds is based on phylogenomic data, reflecting a recent phylogenomic supertree analysis[19] and modified after two more recent phylogenomic studies.[20][2]

Neoaves
Mirandornithes

Phoenicopteriformes (flamingos)Cuvier-87-Flamant rouge.jpg

Podicipediformes (grebes)Podiceps cristatus Naumann white background.jpg

Columbimorphae

Columbiformes (pigeons) Ducula whartoni.jpg

Mesitornithiformes (mesites)Monias benschi 1912 white background.jpg

Pterocliformes (sandgrouse)Pterocles quadricinctus white background.jpg

Passerea

Opisthocomiformes (hoatzin)Cuvier-59-Hoazin huppé.jpg

Gruiformes (rails and cranes)Cuvier-72-Grue cendrée.jpg

Charadriiformes (waders and relatives)D'Orbigny-Mouette rieuse et Bec-en-ciseaux white background.jpg

Otidimorphae

Otidiformes (bustards)Cayley Ardeotis australis flipped.jpg

Cuculiformes (cuckoos)British birds in their haunts (Cuculus canorus).jpg

Musophagiformes (turacos)Planches enluminées d'histoire naturelle (1765) (Tauraco persa).jpg

Strisores

Caprimulgiformes (nightjars)

Steatornithiformes (oilbird) Steatornis caripensis MHNT ZON STEA 1.jpg

Nyctibiiformes (potoos)

Podargiformes (frogmouths)

Aegotheliformes (owlet-nightjars)

Apodiformes (swifts, treeswifts and hummingbirds) White-eared Hummingbird (Basilinna leucotis) white background.jpg

Phaethoquornithes
Eurypygimorphae

Phaethontiformes (tropicbirds)Cuvier-95-Phaeton à bec rouge.jpg

Eurypygiformes (sunbittern and kagu)Cuvier-72-Caurale soleil.jpg

Aequornithes

Gaviiformes[21] (loons)

Austrodyptornithes

Procellariiformes (albatrosses and petrels) Thalassarche chlororhynchos 1838.jpg

Sphenisciformes (penguins) Chinstrap Penguin white background.jpg

Ciconiiformes (storks) Weißstorch (Ciconia ciconia) white background.jpg

Suliformes (boobies, cormorants, etc.) Cormorant in Strunjan, white background.png

Pelecaniformes (pelicans, herons & ibises) Spot-billed pelican takeoff white background.jpg

Telluraves
Accipitrimorphae

Cathartiformes (New World vultures)Vintage Vulture Drawing white background.jpg

Accipitriformes (hawks and relatives)Golden Eagle Illustration white background.jpg

Strigiformes (owls)Cuvier-12-Hibou à huppe courte.jpg

Coraciimorphae

Coliiformes (mouse birds)

Cavitaves

Leptosomiformes (cuckoo roller)

Trogoniformes (trogons and quetzals)Harpactes fasciatus 1838 white background.jpg

Picocoraciae

Bucerotiformes (hornbills and relatives)

Picodynastornithes

Coraciiformes (kingfishers and relatives)Cuvier-46-Martin-pêcheur d'Europe.jpg

Piciformes (woodpeckers and relatives)

Australaves

Cariamiformes (seriemas and terror birds)Cariama cristata 1838 white background.jpg

Eufalconimorphae

Falconiformes (falcons)NewZealandFalconBuller white background.jpg

Psittacopasserae

Psittaciformes (parrots)Pyrrhura lucianii - Castelnau 2.jpg

Passeriformes (passerines)Cuvier-33-Moineau domestique.jpg

References

  1. Ksepka, Daniel T.; Stidham, Thomas A.; Williamson, Thomas E. (25 July 2017). "Early Paleocene landbird supports rapid phylogenetic and morphological diversification of crown birds after the K–Pg mass extinction". Proceedings of the National Academy of Sciences 114 (30): 8047–8052. doi:10.1073/pnas.1700188114. PMID 28696285. Bibcode2017PNAS..114.8047K. 
  2. 2.0 2.1 Kuhl., H.; Frankl-Vilches, C.; Bakker, A.; Mayr, G.; Nikolaus, G.; Boerno, S. T.; Klages, S.; Timmermann, B. et al. (2021). "An unbiased molecular approach using 3'UTRs resolves the avian family-level tree of life.". Molecular Biology and Evolution 38: 108–127. doi:10.1093/molbev/msaa191. PMID 32781465. 
  3. Field, Daniel J.; Benito, Juan; Chen, Albert; Jagt, John W. M.; Ksepka, Daniel T. (March 2020). "Late Cretaceous neornithine from Europe illuminates the origins of crown birds". Nature 579 (7799): 397–401. doi:10.1038/s41586-020-2096-0. ISSN 0028-0836. PMID 32188952. Bibcode2020Natur.579..397F. https://www.repository.cam.ac.uk/handle/1810/303639. 
  4. Jarvis, E. D. et al. (2014). "Whole-genome analyses resolve early branches in the tree of life of modern birds". Science 346 (6215): 1320–1331. doi:10.1126/science.1253451. ISSN 0036-8075. PMID 25504713. Bibcode2014Sci...346.1320J. 
  5. Ericson, Per G.P. et al. (2006). "Diversification of Neoaves: integration of molecular sequence data and fossils". Biology Letters 2 (4): 543–547. doi:10.1098/rsbl.2006.0523. PMID 17148284. PMC 1834003. http://www.senckenberg.de/files/content/forschung/abteilung/terrzool/ornithologie/neoaves.pdf. Retrieved 2019-08-29. 
  6. McCormack, J.E. (2013). "A phylogeny of birds based on over 1,500 loci collected by target enrichment and high-throughput sequencing". PLOS ONE 8 (1): e54848. doi:10.1371/journal.pone.0054848. PMID 23382987. Bibcode2013PLoSO...854848M. 
  7. Claramunt, S.; Cracraft, J. (2015). "A new time tree reveals Earth history's imprint on the evolution of modern birds". Sci Adv 1 (11): e1501005. doi:10.1126/sciadv.1501005. PMID 26824065. Bibcode2015SciA....1E1005C. 
  8. Mayr, G (2011). "Metaves, Mirandornithes, Strisores and other novelties - a critical review of the higher-level phylogeny of neornithine birds". J Zool Syst Evol Res 49: 58–76. doi:10.1111/j.1439-0469.2010.00586.x. 
  9. Matzke, A. et al. (2012) Retroposon insertion patterns of neoavian birds: strong evidence for an extensive incomplete lineage sorting era Mol. Biol. Evol.
  10. Claramunt, S.; Cracraft, J. (2015). "A new time tree reveals Earth history's imprint on the evolution of modern birds". Sci Adv 1 (11): e1501005. doi:10.1126/sciadv.1501005. PMID 26824065. Bibcode2015SciA....1E1005C. 
  11. Mayr, G (2011). "Metaves, Mirandornithes, Strisores and other novelties - a critical review of the higher-level phylogeny of neornithine birds". J Zool Syst Evol Res 49: 58–76. doi:10.1111/j.1439-0469.2010.00586.x. 
  12. Matzke, A. et al. (2012) "Retroposon insertion patterns of neoavian birds: strong evidence for an extensive incomplete lineage sorting era" Mol. Biol. Evol.
  13. 13.0 13.1 Braun, Edward L.; Cracraft, Joel; Houde, Peter (2019). "Resolving the Avian Tree of Life from Top to Bottom: The Promise and Potential Boundaries of the Phylogenomic Era". Avian Genomics in Ecology and Evolution. pp. 151–210. doi:10.1007/978-3-030-16477-5_6. ISBN 978-3-030-16476-8. 
  14. 14.0 14.1 Jarvis, E.D. (2014). "Whole-genome analyses resolve early branches in the tree of life of modern birds". Science 346 (6215): 1320–1331. doi:10.1126/science.1253451. PMID 25504713. Bibcode2014Sci...346.1320J. 
  15. 15.0 15.1 Prum, Richard O.; Berv, Jacob S.; Dornburg, Alex; Field, Daniel J.; Townsend, Jeffrey P.; Lemmon, Emily Moriarty; Lemmon, Alan R. (2015). "A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing". Nature 526 (7574): 569–573. doi:10.1038/nature15697. ISSN 0028-0836. PMID 26444237. Bibcode2015Natur.526..569P. 
  16. 16.0 16.1 16.2 Reddy, Sushma; Kimball, Rebecca T.; Pandey, Akanksha; Hosner, Peter A.; Braun, Michael J.; Hackett, Shannon J.; Han, Kin-Lan; Harshman, John et al. (2017). "Why Do Phylogenomic Data Sets Yield Conflicting Trees? Data Type Influences the Avian Tree of Life more than Taxon Sampling". Systematic Biology 66 (5): 857–879. doi:10.1093/sysbio/syx041. ISSN 1063-5157. PMID 28369655. 
  17. Suh, Alexander (2016). "The phylogenomic forest of bird trees contains a hard polytomy at the root of Neoaves". Zoologica Scripta 45: 50–62. doi:10.1111/zsc.12213. ISSN 0300-3256. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-309580. 
  18. Houde, Peter; Braun, Edward L.; Narula, Nitish; Minjares, Uriel; Mirarab, Siavash (2019). "Phylogenetic Signal of Indels and the Neoavian Radiation". Diversity 11 (7): 108. doi:10.3390/d11070108. ISSN 1424-2818. 
  19. Kimball, R.T.; Oliveros, C.H.; Wang, N.; White, N.D.; Barker, F.K.; Field, D.J.; Ksepka, D.T.; Chesser, R.T.; Moyle, R.G.; & Braun, M.J. (2019) A phylogenomic supertree of birds. Diversity 2019, 11, 109.
  20. Cite error: Invalid <ref> tag; no text was provided for refs named Braun&Kimball2021
  21. Boyd, John (2007). "NEORNITHES: 46 Orders". http://jboyd.net/Taxo/Orders.pdf. 

Wikidata ☰ Q2330918 entry