From HandWiki
Short description: Group of eukaryotes which includes animals and fungi, among other groups

Temporal range: 1300 –0 Ma[1]
Opisthokonta collage.jpg
Clockwise, from top left: Abeoforma whisleri (Mesomycetozoea); Amanita muscaria (Fungi); Desmarella moniliformis (Choanoflagellatea); Bonnet Macaque (Metazoa); Nuclearia thermophila (Nucleariida); Ministeria vibrans (Filasterea)
Scientific classification e
(unranked): Unikonta
(unranked): Obazoa
(unranked): Opisthokonta
Copeland 1956,[2] emend. Cavalier-Smith 1987,[3] emend. Adl et al., 2005[4]

The opisthokonts (Greek: ὀπίσθιος (opísthios)="rear, posterior" + κοντός (kontós)="pole" i.e. "flagellum") are a broad group of eukaryotes, including both the animal and fungus kingdoms.[5] The opisthokonts, previously called the "Fungi/Metazoa group",[6] are generally recognized as a clade. Opisthokonts together with Apusomonadida and Breviata comprise the larger clade Obazoa.[7][8][9][10][11]

Flagella and other characteristics

A common characteristic of opisthokonts is that flagellate cells, such as the sperm of most animals and the spores of the chytrid fungi, propel themselves with a single posterior flagellum. It is this feature that gives the group its name. In contrast, flagellate cells in other eukaryote groups propel themselves with one or more anterior flagella. However, in some opisthokont groups, including most of the fungi, flagellate cells have been lost.[7]

Opisthokont characteristics include synthesis of extracellular chitin in exoskeleton, cyst/spore wall, or cell wall of filamentous growth and hyphae; the extracellular digestion of substrates with osmotrophic absorption of nutrients; and other cell biosynthetic and metabolic pathways. Genera at the base of each clade are amoeboid and phagotrophic.[12]


The close relationship between animals and fungi was suggested by Thomas Cavalier-Smith in 1987,[3] who used the informal name opisthokonta (the formal name has been used for the chytrids by Copeland in 1956), and was supported by later genetic studies.[13]

Early phylogenies placed fungi near the plants and other groups that have mitochondria with flat cristae, but this character varies. More recently, it has been said that holozoa (animals) and holomycota (fungi) are much more closely related to each other than either is to plants, because opisthokonts have a triple fusion of carbamoyl phosphate synthetase, dihydroorotase, and aspartate carbamoyltransferase that is not present in plants, and plants have a fusion of thymidylate synthase and dihydrofolate reductase not present in the opisthokonts. Animals and fungi are also more closely related to amoebas than to plants, and plants are more closely related to the SAR supergroup of protists than to animals or fungi. Animals and fungi are both heterotrophs, unlike plants, and while fungi are sessile like plants, there are also sessile animals.

Cavalier-Smith and Stechmann argue that the uniciliate eukaryotes such as opisthokonts and Amoebozoa, collectively called unikonts, split off from the other biciliate eukaryotes, called bikonts, shortly after they evolved.[14]


Opisthokonts are divided into Holomycota or Nucletmycea (fungi and all organisms more closely related to fungi than to animals) and Holozoa (animals and all organisms more closely related to animals than to fungi); no opisthokonts basal to the Holomycota/Holozoa split have yet been identified. The Opisthokonts was largely resolved by Torriella et al.[15] Holomycota and Holozoa are composed of the following groups.


The choanoflagellates have a circular mitochondrial DNA genome with long intergenic regions. This is four times as large as animal mitochondrial genomes and contains twice as many protein coding genes.

Corallochytrium seem likely to be more closely related to the fungi than to the animals on the basis of the presence of ergosterol in their membranes and being capable of synthesis of lysine via the AAA pathway.

The ichthyosporeans have a two amino acid deletion in their EEF1A1 gene that is considered characteristic of fungi.

The ichthyosporean genome is >200 kilobase pairs in length and consists of several hundred linear chromosomes that share elaborate terminal-specific sequence patterns.

In the following phylogenetic tree it is indicated how many millions of years ago (Mya) the clades diverged into newer clades. The holomycota tree is following Tedersoo et al.[17]


Archaeplastida (Plantae sensu lato) Pediastrum (cropped).jpg

Hacrobia Coccolithus pelagicus.jpg

SAR supergroup Ochromonas.png

Excavata Euglena mutabilis - 400x - 1 (10388739803) (cropped).jpg


CRuMs Collodictyon anterior view, showing sulcus, nucleus, blepharoplast, rhizoplast, and four flagella..jpg


Amoebozoa Chaos carolinensis Wilson 1900.jpg


Breviatea Mastigamoeba invertens.jpg

Apusomonadida Apusomonas.png



Nucleariida Nuclearia sp Nikko.jpg



True Fungi Asco1013.jpg

410 mya




Rozella Rozella allomycis2.jpg


Microsporidia Fibrillanosema spore.jpg


Ichthyosporea Abeoforma whisleri-2.jpg


Corallochytrium Corallochytrium limacisporum.png



Filasterea Ministeria vibrans.jpeg


Choanoflagellatea Desmarella moniliformis.jpg

Animalia Comb jelly.jpg

760 mya
950 mya
1300 mya
1500 mya
1850 mya

One view of the great kingdoms and their stem groups. Phylogeny based on Steenkamp et al 2005,[7] and Eichinger et al, 2005.[18]



  1. Loron, Corentin C.; François, Camille; Rainbird, Robert H.; Turner, Elizabeth C.; Borensztajn, Stephen; Javaux, Emmanuelle J. (May 22, 2019). "Early fungi from the Proterozoic era in Arctic Canada". Nature 570 (7760): 232–235. doi:10.1038/s41586-019-1217-0. PMID 31118507. Bibcode2019Natur.570..232L. 
  2. Copeland, H. F. (1956). The Classification of Lower Organisms. Palo Alto: Pacific Books.
  3. 3.0 3.1 Cavalier-Smith, T. (1987). "The origin of fungi and pseudofungi". in Rayner, Alan D. M.. Evolutionary biology of Fungi. Cambridge: Cambridge University Press. pp. 339–353. ISBN 0-521-33050-5. 
  4. Adl, S.M. (September–October 2005). "The new higher level classification of eukaryotes with emphasis on the taxonomy of protists". Journal of Eukaryotic Microbiology 52 (5): 399–451. doi:10.1111/j.1550-7408.2005.00053.x. PMID 16248873. 
  5. Aramayo, Rodolfo, ed (7 May 2008). "Multigene phylogeny of choanozoa and the origin of animals". PLOS ONE 3 (5): e2098. doi:10.1371/journal.pone.0002098. PMID 18461162. Bibcode2008PLoSO...3.2098S. 
  6. "Fungi/Metazoa group". 
  7. 7.0 7.1 7.2 Steenkamp, E.T.; Wright, J.; Baldauf, S.L. (January 2006). "The protistan origins of animals and fungi". Molecular Biology and Evolution 23 (1): 93–106. doi:10.1093/molbev/msj011. PMID 16151185. 
  8. Huang, Jinling; Xu, Ying; Gogarten, Johann Peter (November 2005). "The presence of a haloarchaeal type tyrosyl-tRNA synthetase marks the opisthokonts as monophyletic". Molecular Biology and Evolution 22 (11): 2142–2146. doi:10.1093/molbev/msi221. PMID 16049196. 
  9. Lua error in Module:Cite_Q at line 13: attempt to index a nil value.Wikidata Q21090155
  10. Torruella, Guifré (February 2012). "Phylogenetic relationships within the Opisthokonta based on phylogenomic analyses of conserved single-copy protein domains". Molecular Biology and Evolution 29 (2): 531–544. doi:10.1093/molbev/msr185. PMID 21771718. 
  11. Eme, Laura; Sharpe, Susan C.; Brown, Matthew W.; Roger, Andrew J. (August 2014). "On the Age of Eukaryotes: Evaluating Evidence from Fossils and Molecular Clocks". Cold Spring Harbor Perspectives in Biology 6 (8): a016139. doi:10.1101/cshperspect.a016139. ISSN 1943-0264. PMID 25085908. 
  12. Adl, Sina M.; Bass, David; Lane, Christopher E.; Lukeš, Julius; Schoch, Conrad L.; Smirnov, Alexey; Agatha, Sabine; Berney, Cedric et al. (2018-09-26). "Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes". Journal of Eukaryotic Microbiology 66 (1): 4–119. doi:10.1111/jeu.12691. ISSN 1066-5234. PMID 30257078. 
  13. Wainright, P.O.; Hinkle, G.; Sogin, M.L.; Stickel, S.K. (April 1993). "Monophyletic origins of the metazoa: an evolutionary link with fungi". Science 260 (5106): 340–342. doi:10.1126/science.8469985. PMID 8469985. Bibcode1993Sci...260..340W. 
  14. Stechmann, A.; Cavalier-Smith, T. (5 July 2002). "Rooting the eukaryote tree by using a derived gene fusion". Science 297 (5578): 89–91. doi:10.1126/science.1071196. PMID 12098695. Bibcode2002Sci...297...89S. 
  15. Torruella, Guifré; Mendoza, Alex de; Grau-Bové, Xavier; Antó, Meritxell; Chaplin, Mark A.; Campo, Javier del; Eme, Laura; Pérez-Cordón, Gregorio et al. (2015). "Phylogenomics Reveals Convergent Evolution of Lifestyles in Close Relatives of Animals and Fungi". Current Biology 25 (18): 2404–2410. doi:10.1016/j.cub.2015.07.053. PMID 26365255. 
  16. Matthew W. Brown, Frederick W. Spiegel and Jeffrey D. Silberman (2009), "Phylogeny of the "Forgotten" Cellular Slime Mold, Fonticula alba, Reveals a Key Evolutionary Branch within Opisthokonta", Molecular Biology and Evolution 26 (12): 2699–2709, doi:10.1093/molbev/msp185, PMID 19692665 
  17. Tedersoo, Leho; Sánchez-Ramírez, Santiago; Kõljalg, Urmas; Bahram, Mohammad; Döring, Markus; Schigel, Dmitry; May, Tom; Ryberg, Martin et al. (2018). "High-level classification of the Fungi and a tool for evolutionary ecological analyses". Fungal Diversity 90 (1): 135–159. doi:10.1007/s13225-018-0401-0. ISSN 1560-2745. 
  18. Eichinger, L.; Pachebat, J. A.; Glöckner, G.; Rajandream, M. A.; Sucgang, R.; Berriman, M.; Song, J.; Olsen, R. et al. (2005). "The genome of the social amoeba Dictyostelium discoideum". Nature 435 (7038): 43–57. doi:10.1038/nature03481. PMID 15875012. Bibcode2005Natur.435...43E. 

External links

See also Wikidata entry Q129021.