Chemistry:2,6-Diacetylpyridine

From HandWiki
2,6-Diacetylpyridine
Skeletal formula
2,6-Ac2py.jpg
Names
Preferred IUPAC name
1,1′-(Pyridine-2,6-diyl)di(ethan-1-one)
Other names
1,1′-(Pyridine-2,6-diyl)diethanone
1-(6-Acetylpyridin-2-yl)ethanone
DAP
2,6-Bisacetylpyridine
Identifiers
3D model (JSmol)
ChemSpider
EC Number
  • 214-442-9
UNII
Properties
C9H9NO2
Molar mass 163.176 g·mol−1
Appearance White crystals
Density 1.119 g/cm3
Melting point 81 °C (178 °F; 354 K) Sublimes at 110 to 130 °C (230 to 266 °F; 383 to 403 K)
Boiling point 126 °C (259 °F; 399 K)
Hazards
Safety data sheet MSDS sheet
GHS pictograms GHS07: Harmful
GHS Signal word Warning
H315, H319, H335
P261, P264, P271, P280, P302+352, P304+340, P305+351+338, P312, P321, P332+313, P337+313, P362, P403+233, P405, P501
Related compounds
Related pyridines
2-acetylpyridine
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☑Y verify (what is ☑Y☒N ?)
Infobox references
Tracking categories (test):

2,6-Diacetylpyridine is an organic compound with the formula C5H3N(C(O)CH3)2. It is a white solid that is soluble in organic solvents. It is a disubstituted pyridine. It is a precursor to ligands in coordination chemistry.[1][2]

Synthesis

The synthesis of 2,6-diacetylpyridine begins with oxidation of the methyl groups in 2,6-lutidine to form dipicolinic acid. This process has been well established with potassium permanganate and selenium dioxide.[3] The diketone can be formed from the diester of picolinic acid groups through a Claisen condensation.[4] The resulting adduct can be decarboxylated to give diacetylpyridine.[5]

DAP synthesis Claisen

Treating 2,6-pyridinedicarbonitrile with methylmagnesium bromide provides an alternative synthesis for the diketone.[2]

DAP synthesis Grignard

Precursor to Schiff base ligands

Diacetylpyridine is a popular starting material for ligands in coordination chemistry, often via template reactions. The diiminopyridine (DIP) class of ligands can be formed from diacetylpyridine through Schiff base condensation with substituted anilines. Diiminopyridine ligands have been the focus of much interest due to their ability to traverse a wide range of oxidation states.[2]

diiminopyridine_synthesis

In azamacrocycle chemistry, diacetylpyridines can undergo the same Schiff base condensation with N1-(3-aminopropyl)propane-1,3-diamines. The product of the condensation can be hydrogenated to yield macrocyclic tetradentate ligands. Similar penta- and hexadentate ligands have been synthesized by varying the polyamine chain.[1]

See also

References

  1. 1.0 1.1 Curtis, N. F. (2012). "The Advent of Macrocyclic Chemistry". Supramolecular Chemistry 24 (7): 439–447. doi:10.1080/10610278.2012.688123. 
  2. 2.0 2.1 2.2 Schmidt, R.; Welch, M.B.; Palackal, S.J.; Alt, H.G. (2001). "Hydrogenized iron(II) complexes as highly active ethene polymerization catalysts". Journal of Molecular Catalysis A: Chemical 179 (1–2): 155–173. doi:10.1016/S1381-1169(01)00333-8. 
  3. Agnese, G. & Burshchi, E., "Two Stage Process for Preparing 2,6-pyridinedicarboxylic acid", CA patent 1108617
  4. Darmon, Jonathan M.; Turner, Zoë R.; Lobkovsky, Emil; Chirik, Paul J.; Finkelstein, K. D.; Wieghardt, K.; Debeer, S.; Chirik, P. J. (2012). "Electronic Effects in 4-Substituted Bis(imino)pyridines and the Corresponding Reduced Iron Compounds". Organometallics 31 (6): 2275–2285. doi:10.1021/om201212m. PMID 22675236. 
  5. Yoshiro Ogata; Masaru Tsuchida; Akihiko Muramoto (2006). "Controlled Synthesis of 2-Acetyl-6-carbethioxypyridine and 2-6-Diacetylpyridine from 2,6-Dimethylpyridine". Synth. Commun. 35 (17): 2317–2324. doi:10.1080/00397910500186995.