Chemistry:4-Chlorobenzaldehyde

From HandWiki
4-Chlorobenzaldehyde
4-Chlorbenzaldehyd.svg
Identifiers
3D model (JSmol)
ChEMBL
EC Number
  • 203-247-4
KEGG
UNII
UN number 2811
Properties
C7H5ClO
Molar mass 140.57 g·mol−1
Melting point 47.5 °C (117.5 °F; 320.6 K)
Boiling point 213.5 °C (416.3 °F; 486.6 K)
Hazards
GHS pictograms GHS07: HarmfulGHS09: Environmental hazard
GHS Signal word Warning
H302, H315, H317, H319, H411
P261, P264, P264+265Script error: No such module "Preview warning".Category:GHS errors, P270, P271, P272, P273, P280, P301+317Script error: No such module "Preview warning".Category:GHS errors, P302+352, P304+340, P305+351+338, P319Script error: No such module "Preview warning".Category:GHS errors, P321, P330, P332+317Script error: No such module "Preview warning".Category:GHS errors, P333+313, P337+317Script error: No such module "Preview warning".Category:GHS errors, P362+364Script error: No such module "Preview warning".Category:GHS errors, P391, P403+233, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references
Tracking categories (test):

4-Chlorobenzaldehyde is an organic compound with the chemical formula C7H5ClO. It can be produced by the oxidation of 4-chlorobenzyl alcohol.[2][3] It can be further oxidized to 4-chlorobenzoic acid.[4] It will react with malononitrile to form 4-chlorobenzylidenylmalononitrile. [5]4-Chlorobenzaldehyde reacts with benzylamine to produce N-(4-chlorobenzylidenyl)benzylamine。[6]

References

  1. "4-Chlorobenzaldehyde" (in en). https://pubchem.ncbi.nlm.nih.gov/compound/7726#section=Safety-and-Hazards. 
  2. Yang, Y. X.; An, X. Q.; Kang, M.; Zeng, W.; Yang, Z. W.; Ma, H. C. (2020). "A Simple and Effective Method for Catalytic Oxidation of Alcohols Using the Oxone/Bu4NHSO4 Oxidation System" (in en). Russian Journal of Organic Chemistry 56 (3): 521–523. doi:10.1134/S1070428020030240. ISSN 1070-4280. https://link.springer.com/10.1134/S1070428020030240. Retrieved 2021-05-10. 
  3. Alegre-Requena, Juan V.; Marqués-López, Eugenia; Herrera, Raquel P. (2018-01-04). "Organocatalyzed Enantioselective Aldol and Henry Reactions Starting from Benzylic Alcohols" (in en). Advanced Synthesis & Catalysis 360 (1): 124–129. doi:10.1002/adsc.201701351. ISSN 1615-4150. https://onlinelibrary.wiley.com/doi/10.1002/adsc.201701351. Retrieved 2021-05-10. 
  4. Hajimohammadi, Mahdi; Azizi, Naeleh; Tollabimazraeno, Sajjad; Tuna, Ali; Duchoslav, Jiri; Knör, Günther (2021). "Cobalt (II) Phthalocyanine Sulfonate Supported on Reduced Graphene Oxide (RGO) as a Recyclable Photocatalyst for the Oxidation of Aldehydes to Carboxylic Acids" (in en). Catalysis Letters 151 (1): 36–44. doi:10.1007/s10562-020-03287-9. ISSN 1011-372X. https://link.springer.com/10.1007/s10562-020-03287-9. Retrieved 2021-05-10. 
  5. Gao, Ziyang; Yang, Hongyuan; Liu, Qing (2019). "Natural Seashell Waste as an Efficient and Low-Cost Catalyst for the Synthesis of Arylmethylenemalonitriles" (in en). CLEAN – Soil, Air, Water 47 (10): 1900129. doi:10.1002/clen.201900129. ISSN 1863-0650. https://onlinelibrary.wiley.com/doi/10.1002/clen.201900129. Retrieved 2021-05-10. 
  6. He, Meixia; Lehn, Jean-Marie (2019-11-20). "Time-Dependent Switching of Constitutional Dynamic Libraries and Networks from Kinetic to Thermodynamic Distributions" (in en). Journal of the American Chemical Society 141 (46): 18560–18569. doi:10.1021/jacs.9b09395. ISSN 0002-7863. PMID 31714075. https://pubs.acs.org/doi/10.1021/jacs.9b09395. Retrieved 2021-05-10.