Chemistry:Ammonium tetrathiomolybdate

From HandWiki
Ammonium tetrathiomolybdate
Ammonium Tetrathiomolybdate.jpg
Names
Other names
ammonium thiomolybdate
Identifiers
3D model (JSmol)
ChemSpider
RTECS number
  • QA4668250
UNII
Properties
(NH4)2MoS4
Molar mass 260.28 g/mol
Appearance red crystals
Melting point decomp ~ 155 °C[1]
Basicity (pKb) decomposes
Structure
[2]
Hazards
Main hazards toxic
GHS pictograms GHS07: Harmful
GHS Signal word Warning
H315, H319, H335
P261, P264, P271, P280, P302+352, P304+340, P305+351+338, P312, P321, P332+313, P337+313, P362, P403+233, P405, P501
Related compounds
Related compounds
(NH4)2[WS4],
MoS2
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☑Y verify (what is ☑Y☒N ?)
Infobox references

Ammonium tetrathiomolybdate is the chemical compound with the formula (NH4)2MoS4. This bright red ammonium salt is an important reagent in the chemistry of molybdenum and has been used as a building block in bioinorganic chemistry. The thiometallate (see metallate) anion has the distinctive property of undergoing oxidation at the sulfur centers concomitant with reduction of the metal from Mo(VI) to Mo(IV).

Preparation and structure

The salt contains the tetrahedral [MoS4]2− anion. The compound is prepared by treating solutions of molybdate, [MoO4]2− with hydrogen sulfide in the presence of ammonia:[3]

(NH4)2MoO4 + 4 H2S → (NH4)2MoS4 + 4 H2O
The [MoS4]2− anion.

Reactions

The anion is also an excellent ligand. For example, with Ni(II) sources, it forms [Ni(MoS4)2]2−. Much of the chemistry of the thiomolybdate results from studies on salts of quaternised organic cations, such as [NEt4]2[MoS4] and [PPh4]2[MoS4] (Et = C2H5, Ph = C6H5).[4] These organic salts are soluble in polar organic solvents such as acetonitrile and dmf.

The thermal decomposition of [NH4]2[MoS4] leads to molybdenum trisulfide (MoS3), ammonia (NH3) and hydrogen sulfide (H2S), beginning at 155 °C till 280 °C.[1]

(NH4)2MoS4 → MoS3 + 2 NH3 + H2S

MoS3 then decomposes again to molybdenum disulfide (MoS2) in a broad temperature range from 300 °C to 820 °C. Perfect decomposition to MoS2 under inert gas requires at least 800 °C according to the following reaction,

MoS3 → MoS2 + S

but it can also be achieved at 450 °C, if there is enough hydrogen.[5]

MoS3 + H2 → MoS2 + H2S

Related compounds

Several related thio and seleno anions are known including (A = alkali metal cation, [PPh4]+, [NEt4]+)

More complex tetrahedral anions include A2[MoS4−xOx] and A2[WS4−xOx]

Uses

Ammonium tetrathiomolybdate was first used therapeutically in the treatment of copper toxicosis in animals. It was then introduced as a treatment in Wilson's disease, a hereditary copper metabolism disorder, in humans; it acts both by competing with copper absorption in the bowel and by increasing excretion. Clinical studies have shown ATTM can effectively lower copper levels faster than currently available treatments, and that fewer patients with an initial neurological presentation of their disease who are treated with ATTM experience neurological deterioration [14][15][16]

Various phase II clinical trial of ATTM for copper depletion in cancer have been performed.[17]

ATTM has also been found to have an inhibitory effect on angiogenesis, potentially via the inhibition of Cu ion dependent membrane translocation process involving a non-classical secretion pathway.[18] This makes it an interesting investigatory treatment for cancer, age-related macular degeneration, and other diseases featuring excessive blood vessel deposition.[14]

References

  1. 1.0 1.1 Prasad, TP; Diemann, E; Müller, A (1973). "Thermal decomposition of (NH4)2MoO2S2, (NH4)2MoS4, (NH4)2WO2S2 and (NH4)2WS4". Journal of Inorganic and Nuclear Chemistry 35 (6): 1895. doi:10.1016/0022-1902(73)80124-1. 
  2. Hill, B; Lerner, H-W; Bolte, M (2010). "Redetermination of diammonium thiomolybdate". Acta Crystallographica E 66 (13): i13. doi:10.1107/S1600536810003016. PMID 21579587. PMC 2979694. Bibcode2010AcCrE..66I..13H. http://publikationen.ub.uni-frankfurt.de/files/21908/e_66_00i13.pdf. 
  3. Müller, A; Diemann, E; Jostes, R; Bögge, H (1981). "Transition metal thio anions: Properties and significance for complex chemistry and bioinorganic chemistry". Angewandte Chemie International Edition in English 20 (11): 934. doi:10.1002/anie.198109341. 
  4. Coucouvanis, D (1998). "Syntheses, structures, and reactions of binary and tertiary thiomolydate complexes containing the (O)Mo(Sx) and (S)Mo(Sx) functional groups (x = 1, 2, 4)". Advances in Inorganic Chemistry 45: 1–73. doi:10.1016/S0898-8838(08)60024-0. ISBN 978-0-12-023645-9. 
  5. Brito, JL; Ilija, M; Hernández, P (1995). "Thermal and reductive decomposition of ammonium thiomolybdates". Thermochimica Acta 256 (2): 325. doi:10.1016/0040-6031(94)02178-Q. 
  6. 6.0 6.1 6.2 Lee, SC; Li, J; Mitchell, JC; Holm, RH (1992). "Group 5 tetrathiometalates: Simplified syntheses and structures". Inorg. Chem. 31 (21): 4333–4338. doi:10.1021/ic00047a021. 
  7. 7.0 7.1 Prasad, T. P.; Müller, A. (1976). "Thermal decompositions of (NH4)2WSe4 and (NH4)3VS4 under normal and reduced nitrogen pressures". Journal of Thermal Analysis 10: 396–373. doi:10.1021/jo00032a019. 
  8. Srinivasan, BR; Poisot, M; Näther, C; Bensch, W (2004). "Diammonium tetrathiotungstate(VI), [NH4]2[WS4], at 150 K". Acta Crystallographica E E60 (11): i136–8. doi:10.1107/S1600536804023761. Bibcode2004AcCrE..60I.136S. 
  9. Hunyadi, Dávid; Machado Ramos, Ana Luisa Vieira; Szilágyi, Imre Miklós (2015). "Thermal decomposition of ammonium tetrathiotungstate". Journal of Thermal Analysis and Calorimetry 120: 209–215. doi:10.1007/s10973-016-5353-6. 
  10. Dhar, Preeti; Chidambaram, Nallaperumal; Chandrasekaran, Srinivasan (1992). "Piperidinium tetrathiotungstate as sulfur transfer reagent: synthesis of cyclic disulfides". The Journal of Organic Chemistry 57 (6): 1699–1702. doi:10.1021/jo00032a019. 
  11. Sureshkumar, Devarajulu; Gunasundari, Thanikachalam; Saravanan, Vadivelu; Chandrasekaran, Srinivasan (2007). "Tetraselenotungstate: an efficient selenating reagent for the synthesis of β-amino diselenides by aziridine ring opening reactions". Tetrahedron Letters 48 (4): 623–626. doi:10.1016/j.tetlet.2006.11.118. 
  12. Goodman, JT; Rauchfuss, TB (2002). "Useful Reagents and Ligands". Inorganic Syntheses. Inorganic Syntheses. 33. pp. 107–110. doi:10.1002/0471224502.ch2. ISBN 0471208256. 
  13. Compound Summary for Bis-choline tetrathiomolybdate
  14. 14.0 14.1 Brewer, GJ; Hedera, P; Kluin, KJ; Carlson, M et al. (2003). "Treatment of Wilson disease with ammonium tetrathiomolybdate: III. Initial therapy in a total of 55 neurologically affected patients and follow-up with zinc therapy". Arch Neurol 60 (3): 379–85. doi:10.1001/archneur.60.3.379. PMID 12633149. http://archneur.ama-assn.org/cgi/content/full/60/3/379. 
  15. Brewer, GJ; Askari, F; Lorincz, MT; Carlson, M et al. (2006). "Treatment of Wilson disease with ammonium tetrathiomolybdate: IV. Comparison of tetrathiomolybdate and trientine in a double-blind study of treatment of the neurologic presentation of Wilson disease". Arch Neurol 63 (4): 521–7. doi:10.1001/archneur.63.4.521. PMID 16606763. 
  16. Brewer, GJ; Askari, F; Dick, RB; Sitterly, J et al. (2009). "Treatment of Wilson's disease with tetrathiomolybdate: V. Control of free copper by tetrathiomolybdate and a comparison with trientine". Translational Research 154 (2): 70–7. doi:10.1016/j.trsl.2009.05.002. PMID 19595438. 
  17. Lopez, Jay; Ramchandani, Divya; Vahdat, Linda (2019). "Chapter 12. Copper Depletion as a Therapeutic Strategy in Cancer". in Sigel, Astrid; Freisinger, Eva; Sigel, Roland K. O. et al.. Essential Metals in Medicine:Therapeutic Use and Toxicity of Metal Ions in the Clinic. 19. Berlin: de Gruyter GmbH. 267–301. doi:10.1515/9783110527872-018. ISBN 978-3-11-052691-2. 
  18. Nickel, W (2003). "The Mystery of nonclassical protein secretion, a current view on cargo proteins and potential export routes". Eur. J. Biochem. 270 (10): 2109–2119. doi:10.1046/j.1432-1033.2003.03577.x. PMID 12752430.