Chemistry:Cerulenin
Names | |
---|---|
Preferred IUPAC name
(2R,3S)-3-[(4E,7E)-Nona-4,7-dienoyl]oxirane-2-carboxamide | |
Identifiers | |
3D model (JSmol)
|
|
ChEBI | |
ChEMBL | |
ChemSpider | |
DrugBank | |
KEGG | |
PubChem CID
|
|
UNII | |
| |
| |
Properties | |
C12H17NO3 | |
Molar mass | 223.2695 |
Density | 1.135 g/mL |
Boiling point | 456.14 °C (853.05 °F; 729.29 K) |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). | |
verify (what is ?) | |
Infobox references | |
Cerulenin is an antifungal antibiotic that inhibits fatty acid and steroid biosynthesis. It was the first natural product antibiotic known to inhibit lipid synthesis.[1] In fatty acid synthesis, it has been reported to bind in equimolar ratio to b-keto-acyl-ACP synthase, one of the seven moieties of fatty acid synthase, blocking the interaction of malonyl-CoA. It also has the related activity of stimulating fatty acid oxidation through the activation of CPT1, another enzyme normally inhibited by malonyl-CoA. Inhibition involves covalent thioacylation that permanently inactivates the enzymes.[2] These two behaviors may increase the availability of energy in the form of ATP, perhaps sensed by AMPK, in the hypothalamus.[3]
In sterol synthesis, cerulenin inhibits HMG-CoA synthetase activity.[4] It was also reported that cerulenin specifically inhibited fatty acid biosynthesis in Saccharomyces cerevisiae without having an effect on sterol formation.[4] But in general conclusion, cerulenin has inhibitory effects on sterol synthesis.[citation needed]
Cerulenin causes a dose-dependent decrease in HER2/neu protein levels in breast cancer cells, from 14% at 1.25 to 78% at 10 milligrams per liter, and targeting of fatty acid synthase by related drugs has been suggested as a possible treatment.[5] Antiproliferative and pro-apoptotic effects have been shown in colon cells as well.[6] At an intraperitoneal dose of 30 milligrams per kilogram, it has been shown to inhibit feeding and induce dramatic weight loss in mice by a mechanism similar to, but independent or downstream of, leptin signaling.[7] It is found naturally in the industrial strain Cephalosporium caerulens (Sarocladium oryzae, the sheath rot pathogen of rice).[citation needed]
See also
References
- ↑ Volpe, J J; Vagelos, P R (1976). "Mechanisms and regulation of biosynthesis of saturated fatty acids.". Physiological Reviews (American Physiological Society) 56 (2): 339–417. doi:10.1152/physrev.1976.56.2.339. ISSN 0031-9333. PMID 6981.
- ↑ "The effects of cerulenin, an inhibitor of protein acylation, on the two phases of glucose-stimulated insulin secretion". Diabetes 51 Suppl 1 (90001): S91–5. February 2002. doi:10.2337/diabetes.51.2007.S91. PMID 11815464. http://diabetes.diabetesjournals.org/cgi/content/full/51/suppl_1/S91.
- ↑ Reviewed in "Fatty acid metabolism, the central nervous system, and feeding". Obesity (Silver Spring) 14 (Suppl 5): 201S–207S. August 2006. doi:10.1038/oby.2006.309. PMID 17021367.
- ↑ 4.0 4.1 "Mechanism of Action of CM-55, a Synthetic Analogue of the Antilipogenic Antibiotic Cerulenin". Antimicrob. Agents Chemother. 6 (4): 387–92. October 1974. doi:10.1128/aac.6.4.387. PMID 4157441.
- ↑ "Inhibition of fatty acid synthase (FAS) suppresses HER2/neu (erbB-2) oncogene overexpression in cancer cells". Proc. Natl. Acad. Sci. U.S.A. 101 (29): 10715–20. July 2004. doi:10.1073/pnas.0403390101. PMID 15235125. Bibcode: 2004PNAS..10110715M.
- ↑ "[An experimental study on cerulenin induced apoptosis of human colonic cancer cells]" (in zh). Zhonghua Bing Li Xue Za Zhi 29 (2): 115–8. April 2000. PMID 11866903.
- ↑ "Detection and quantification of phytotoxic metabolites of Sarocladium oryzae in sheath rot-infected grains of rice". Lett. Appl. Microbiol. 34 (6): 398–401. 2002. doi:10.1046/j.1472-765X.2002.01111.x. PMID 12028418.
External links
Original source: https://en.wikipedia.org/wiki/Cerulenin.
Read more |