Chemistry:Diethylene glycol diglycidyl ether

From HandWiki
Diethylene glycol diglycidyl ether
Diethyleenglycoldiglycidylether t.png
Names
IUPAC name
2-[2-[2-(oxiran-2-ylmethoxy)ethoxy]ethoxymethyl]oxirane
Other names
Diethylene glycol diglycidyl ether; 2,2'-(Oxybis(2,1-ethanediyloxymethylene))bisoxirane; 4,7,10-Trioxatridecane, 1,2:12,13-diepoxy-; BRN 1308085; Diethylene glycol bis-glycidyl ether; Diglycidyl diethyleneglycol ether; EINECS 224-122-0; NSC 517936; UNII-DU5YP0O31R; 2,2'-(Oxybis(ethyleneoxymethylene))bisoxirane; Ether, bis(2-(2,3-epoxypropoxy)ethyl); Oxirane, 2,2'-(oxybis(2,1-ethanediyloxymethylene))bis-; Oxirane, 2,2'-(oxybis(2,1-ethanediyloxymethylene))bis- (9CI)
Identifiers
3D model (JSmol)
ChemSpider
EC Number
  • 224-122-0
UNII
Properties
C10H18O5
Molar mass 218.249 g·mol−1
Hazards
GHS pictograms GHS07: Harmful
GHS Signal word Warning
H315, H319, H335
P261, P264, P272, P280, P302+352, P305+351+338, P321, P333+313, P362+364Script error: No such module "Preview warning".Category:GHS errors, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Diethylene glycol diglycidyl ether (DEGDGE) is an organic chemical in the glycidyl ether family with the formula C10H18O5.. The oxirane functionality makes it useful as a reactive diluent for epoxy resin viscosity reduction.[2]

Manufacture

The product is manufactured by adding diethylene glycol and a Lewis acid catalyst into a reactor and streaming in epichlorohydrin slowly to control the exothermic reaction. This forms the halohydrin, which is dehydrochlorinated with sodium hydroxide. This forms the diglycidyl ether. The waste products are sodium chloride, water and excess sodium hydroxide (alkaline brine).[3][4] One of the quality control tests would involve measuring the epoxy value by determination of the epoxy equivalent weight.

Uses

A key use is as a modifier for epoxy resins as a reactive diluent and flexibilizer.[5] The molecule has 2 oxirane functionalities, and thus does not at as a chain terminator but it modifies and reduces the viscosity of epoxy resins.[6][7] These reactive diluent modified epoxy resins may then be further formulated into CASE applications: coatings,[8] (including antimicrobial versions[9]) adhesives,[10] sealants, and elastomers. The use of the diluent does effect mechanical properties and microstructure of epoxy resins.[11][12]

The species has also been used to synthesize other chemical compounds.[13][14][15]

The toxicology has been studied.[16][17]

See also

Further reading

References

  1. "Diethylene glycol diglycidyl ether" (in en). https://pubchem.ncbi.nlm.nih.gov/compound/351024#section=Safety-and-Hazards. 
  2. Jagtap, Ameya Rajendra; More, Aarti (2022-08-01). "Developments in reactive diluents: a review" (in en). Polymer Bulletin 79 (8): 5667–5708. doi:10.1007/s00289-021-03808-5. ISSN 1436-2449. https://doi.org/10.1007/s00289-021-03808-5. 
  3. Crivello, James V. (2006). "Design and synthesis of multifunctional glycidyl ethers that undergo frontal polymerization". Journal of Polymer Science Part A: Polymer Chemistry 44 (21): 6435–6448. doi:10.1002/pola.21761. ISSN 0887-624X. Bibcode2006JPoSA..44.6435C. https://doi.org/10.1002/pola.21761. 
  4. Roth, Martin; Heinz Wolleb & Marc-Andre Truffer, "Process for the preparation of glycidyl ethers", US patent 5162547, published 1992-11-10, assigned to Ciba-Geigy Corp.
  5. Liu, Fengdan; Guo, Kunkun; Yuan, Jianmin (December 2013). "Preparation of the modified epoxy resins with flexible diglycidyl ether of diethylene glycol" (in en). High Performance Polymers 26 (3): 326–334. doi:10.1177/0954008313514083. ISSN 0954-0083. http://journals.sagepub.com/doi/10.1177/0954008313514083. 
  6. Zarnitz, Charles. "Flexibilizing modifiers". https://www.rbhltd.com/wp-content/uploads/2019/05/Flexibilizing-Modifiers.pdf. 
  7. Monte, Salvatore J. (1998), Pritchard, Geoffrey, ed., "Diluents and viscosity modifiers for epoxy resins" (in en), Plastics Additives: An A-Z reference, Polymer Science and Technology Series (Dordrecht: Springer Netherlands) 1: pp. 211–216, doi:10.1007/978-94-011-5862-6_24, ISBN 978-94-011-5862-6, https://doi.org/10.1007/978-94-011-5862-6_24, retrieved 2022-03-29 
  8. Shen, Yue; Fu Zhan & Yan Wu et al., "Epoxy resin composition", WO patent application 2015095994, published 2015-07-02, assigned to Dow Global Technologies LLC
  9. Mao, Shihua; Zhang, Dong; He, Xiaomin; Yang, Yuting; Protsak, Iryna; Li, Yuting; Wang, Jiawen; Ma, Chunxin et al. (2021-01-20). "Mussel-Inspired Polymeric Coatings to Realize Functions from Single and Dual to Multiple Antimicrobial Mechanisms" (in en). ACS Applied Materials & Interfaces 13 (2): 3089–3097. doi:10.1021/acsami.0c16510. ISSN 1944-8244. PMID 33400490. https://pubs.acs.org/doi/10.1021/acsami.0c16510. 
  10. Yuan, Cheng; Luo, Jing; Luo, Jianlin; Gao, Qiang; Li, Jianzhang (2016). "A soybean meal-based wood adhesive improved by a diethylene glycol diglycidyl ether: properties and performance" (in en). RSC Advances 6 (78): 74186–74194. doi:10.1039/C6RA07844C. ISSN 2046-2069. Bibcode2016RSCAd...674186Y. http://xlink.rsc.org/?DOI=C6RA07844C. 
  11. Khalina, Morteza; Beheshty, Mohammad Hosain; Salimi, Ali (2019-08-01). "The effect of reactive diluent on mechanical properties and microstructure of epoxy resins" (in en). Polymer Bulletin 76 (8): 3905–3927. doi:10.1007/s00289-018-2577-6. ISSN 1436-2449. https://doi.org/10.1007/s00289-018-2577-6. 
  12. Pastarnokienė, Liepa; Jonikaitė-Švėgždienė, Jūratė; Lapinskaitė, Neringa; Kulbokaitė, Rūta; Bočkuvienė, Alma; Kochanė, Tatjana; Makuška, Ričardas (2023-07-01). "The effect of reactive diluents on curing of epoxy resins and properties of the cured epoxy coatings" (in en). Journal of Coatings Technology and Research 20 (4): 1207–1221. doi:10.1007/s11998-022-00737-4. ISSN 1935-3804. https://doi.org/10.1007/s11998-022-00737-4. 
  13. Nakatsuji, Yohji; Tsuji, Yuichi; Ikeda, Isao; Okahara, Mitsuo (January 1986). "Reactions of oligoethylene glycol diglycidyl ethers with hydroxy compounds" (in en). The Journal of Organic Chemistry 51 (1): 78–81. doi:10.1021/jo00351a016. ISSN 0022-3263. https://pubs.acs.org/doi/abs/10.1021/jo00351a016. 
  14. Moini, Nasrin; Kabiri, Kourosh; Zohuriaan-Mehr, Mohammad J. (2016-02-11). "Practical Improvement of SAP Hydrogel Properties via Facile Tunable Cross-linking of the Particles Surface". Polymer-Plastics Technology and Engineering 55 (3): 278–290. doi:10.1080/03602559.2015.1070873. ISSN 0360-2559. https://doi.org/10.1080/03602559.2015.1070873. 
  15. Ikeda, Isao; Tsuji, Yuichi; Nakatsuji, Yohji; Okahara, Mitsuo (April 1986). "Synthesis of dihydroxy thia crown ethers and derivatization to bicyclic crown compounds" (in en). The Journal of Organic Chemistry 51 (7): 1128–1130. doi:10.1021/jo00357a037. ISSN 0022-3263. https://pubs.acs.org/doi/abs/10.1021/jo00357a037. 
  16. Jolanki, R.; Takwinun, K.; Tatar, T.; Estlander, T.; Henriks-Eckerman, M.-L.; Mustakallio, K. K.; Kanerva, L. (June 1996). "Occupational dermatoses from exposure to epoxy resin compounds in a ski factory" (in en). Contact Dermatitis 34 (6): 390–396. doi:10.1111/j.1600-0536.1996.tb02239.x. PMID 8879923. https://onlinelibrary.wiley.com/doi/10.1111/j.1600-0536.1996.tb02239.x. 
  17. (in en-us) Current intelligence bulletin 29 - glycidyl ethers.. 2020-09-24. doi:10.26616/NIOSHPUB79104. https://www.cdc.gov/niosh/docs/79-104/default.html. 

External websites