Chemistry:Phthalimide
Names | |
---|---|
Preferred IUPAC name
1H-Isoindole-1,3(2H)-dione | |
Other names
1,3-dioxoisoindoline
Phthalimidoyl (deprotonated) | |
Identifiers | |
3D model (JSmol)
|
|
ChEBI | |
ChEMBL | |
ChemSpider | |
PubChem CID
|
|
UNII | |
| |
| |
Properties[1] | |
C8H5NO2 | |
Molar mass | 147.133 g·mol−1 |
Appearance | White solid |
Melting point | 238 °C (460 °F; 511 K) |
Boiling point | 336 °C (637 °F; 609 K) sublimes |
<0.1 g/100 ml (19.5 °C) | |
Acidity (pKa) | 8.3 |
Basicity (pKb) | 5.7 |
−78.4×10−6 cm3/mol | |
Related compounds | |
Related Amides
|
Maleimide |
Related compounds
|
Phthalic anhydride |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). | |
verify (what is ?) | |
Infobox references | |
Phthalimide is the organic compound with the formula C6H4(CO)2NH. It is the imide derivative of phthalic anhydride. It is a sublimable white solid that is slightly soluble in water but more so upon addition of base. It is used as a precursor to other organic compounds as a masked source of ammonia.[2]
Preparation
Phthalimide can be prepared by heating phthalic anhydride with alcoholic ammonia giving 95–97% yield. Alternatively, it may be prepared by treating the anhydride with ammonium carbonate or urea. It can also be produced by ammoxidation of o-xylene.[2]
Uses
Phthalimide is used as a precursor to anthranilic acid, a precursor to azo dyes and saccharin.[2]
Alkyl phthalimides are useful precursors to amines in chemical synthesis, especially in peptide synthesis where they are used "to block both hydrogens and avoid racemization of the substrates".[3] Alkyl halides can be converted to the N-alkylphthalimide:
- C6H4(CO)2NH + RX + NaOH → C6H4(CO)2NR + NaX + H2O
The amine is commonly liberated using hydrazine:
- C6H4(CO)2NR + N2H4 → C6H4(CO)2N2H2 + RNH2
Dimethylamine can also be used.[4]
Some examples of phthalimide drugs include thalidomide, amphotalide, taltrimide, talmetoprim, and apremilast. With a trichloromethylthio substituent, a phthalimide-derived fungicide is Folpet.
Reactivity
It forms salts upon treatment with bases such as sodium hydroxide. The high acidity of the imido N-H is the result of the pair of flanking electrophilic carbonyl groups. Potassium phthalimide, made by reacting phthalimide with potassium carbonate in water at 100 °C or with potassium hydroxide in absolute ethanol,[5] is used in the Gabriel synthesis of primary amines, such as glycine.
Natural occurrence
Kladnoite is a natural mineral analog of phthalimide.[6] It is very rarely found among a few burning coal fire sites.
Safety
Phthalimide has low acute toxicity with -1">50 (rat, oral) of greater than 5,000 mg/kg.[2]
References
- ↑ "Phthalimide". Chemicalland21. http://www.chemicalland21.com/specialtychem/finechem/PHTHALIMIDE.htm. Retrieved 15 November 2011.
- ↑ 2.0 2.1 2.2 2.3 Lorz, Peter M.; Towae, Friedrich K.; Enke, Walter; Jäckh, Rudolf; Bhargava, Naresh; Hillesheim, Wolfgang. "Ullmann's Encyclopedia of Industrial Chemistry". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a20_181.pub2.
- ↑ "Phthalimides". https://www.organic-chemistry.org/protectivegroups/amino/phthalimides.htm. Retrieved 2013-02-07.
- ↑ "Deprotection – removal of amine protecting groups (phthalimide and dimethylaminosulphonyl)". Archived from the original on 2014-12-03. https://archive.today/20141203032450/http://scientificupdate.co.uk/process-chemistry-information/item/deprotection-removal-of-amine-protecting-groups-phthalimide-and-dimethylaminosulphonyl.html. Retrieved 2013-02-07.
- ↑ Salzberg, P. L.; Supniewski, J. V.. "β-Bromoethylphthalimide". Organic Syntheses 7: 8. doi:10.15227/orgsyn.007.0008.; Collective Volume, 1, pp. 119
- ↑ "Kladnoite". mindat.org. http://www.mindat.org/min-2222.html. Retrieved 15 November 2011.
General reading
- Vollhardt, K. Peter C.; Schore, Neil Eric (2002). Organic Chemistry: Structure and Function (4th ed.). New York: W. H. Freeman. ISBN 978-0-7167-4374-3. https://archive.org/details/organicchemistry00voll_0.
- Finar, Ivor Lionel (1973). Organic Chemistry. 1 (6th ed.). London: Longman. ISBN 0-582-44221-4.
Original source: https://en.wikipedia.org/wiki/Phthalimide.
Read more |